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Higman-Thompson’s groups Vn,r

The elements of the group Vn are homeomorphisms between pairs of covers
of Cn,

that is, bijections between the leaves of any two full n-ary trees with the
same number of leaves:

If we consider r copies of Cn and apply the same definition, we obtain the
group Vn,r , which elements are bijections between the leaves of any two
r -forests of full n-ary trees with the same number of leaves.
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Dehornoy in 2006. They both showed that BV2 is finitely presented and
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• Indeed, the group BVn,r can be defined in the same way as BV2.

• However, the definitions and techniques used by Brin and Dehornoy are
rather algebraic.
I Even though it seems plausible to apply this techniques to BVn,r , it

would be extremely tedious.
I Even proving that BVn,r is a group would be heavy!

• Luckily, in the last decade, new combinatorial and topological methods
have been introduced.
I In our paper, we generalise BV2 to a much larger family of groups

BVn,r (H),H ≤ Bn and we use new approaches to prove that they
are groups and give a finite set of generators if H is finitely
generated.
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Given H a subgroup of the braid group on n strands, we define
BVn,r (H) as the group BVn,r with recursive α braids, α ∈ H, be-
tween covers of Cn.

• In the diagram with trees joined by a braid, the recursive braids are
represented by white vertices labelled with braids in H.

Why does this make sense?

Because diagrams are considered up to equivalence:
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Proving that BVn,r (H) is a group

Theorem [Aroca & C. 2020]
BVn,r (H) is a group.

Idea of the proof.
Inspired by [Newman ’42], [Belk & Matucci ’14] and [Aroca ’18]

1. We define braided diagrams (⊃ (tree, braid, tree)-diagrams).

2. We describe a series of moves that states when two braided
diagrams are equivalent.

3. We show that a braided diagram is equivalent to a unique
“minimal” braided diagram.

4. There is a bijection between classes of equivalent braided diagrams
and the elements of BVn,r (H).

5. The composition of diagrams provides a group structure.



Proving that BVn,r (H) is a group

Theorem [Aroca & C. 2020]
BVn,r (H) is a group.

Idea of the proof.
Inspired by [Newman ’42], [Belk & Matucci ’14] and [Aroca ’18]

1. We define braided diagrams (⊃ (tree, braid, tree)-diagrams).

2. We describe a series of moves that states when two braided
diagrams are equivalent.

3. We show that a braided diagram is equivalent to a unique
“minimal” braided diagram.

4. There is a bijection between classes of equivalent braided diagrams
and the elements of BVn,r (H).

5. The composition of diagrams provides a group structure.



Proving that BVn,r (H) is a group

Theorem [Aroca & C. 2020]
BVn,r (H) is a group.

Idea of the proof.
Inspired by [Newman ’42], [Belk & Matucci ’14] and [Aroca ’18]

1. We define braided diagrams (⊃ (tree, braid, tree)-diagrams).

2. We describe a series of moves that states when two braided
diagrams are equivalent.

3. We show that a braided diagram is equivalent to a unique
“minimal” braided diagram.

4. There is a bijection between classes of equivalent braided diagrams
and the elements of BVn,r (H).

5. The composition of diagrams provides a group structure.



Proving that BVn,r (H) is a group

Theorem [Aroca & C. 2020]
BVn,r (H) is a group.

Idea of the proof.
Inspired by [Newman ’42], [Belk & Matucci ’14] and [Aroca ’18]

1. We define braided diagrams (⊃ (tree, braid, tree)-diagrams).

2. We describe a series of moves that states when two braided
diagrams are equivalent.

3. We show that a braided diagram is equivalent to a unique
“minimal” braided diagram.

4. There is a bijection between classes of equivalent braided diagrams
and the elements of BVn,r (H).

5. The composition of diagrams provides a group structure.



Proving that BVn,r (H) is a group

Theorem [Aroca & C. 2020]
BVn,r (H) is a group.

Idea of the proof.
Inspired by [Newman ’42], [Belk & Matucci ’14] and [Aroca ’18]

1. We define braided diagrams (⊃ (tree, braid, tree)-diagrams).

2. We describe a series of moves that states when two braided
diagrams are equivalent.

3. We show that a braided diagram is equivalent to a unique
“minimal” braided diagram.

4. There is a bijection between classes of equivalent braided diagrams
and the elements of BVn,r (H).

5. The composition of diagrams provides a group structure.



Proving that BVn,r (H) is a group

Theorem [Aroca & C. 2020]
BVn,r (H) is a group.

Idea of the proof.
Inspired by [Newman ’42], [Belk & Matucci ’14] and [Aroca ’18]

1. We define braided diagrams (⊃ (tree, braid, tree)-diagrams).

2. We describe a series of moves that states when two braided
diagrams are equivalent.

3. We show that a braided diagram is equivalent to a unique
“minimal” braided diagram.

4. There is a bijection between classes of equivalent braided diagrams
and the elements of BVn,r (H).

5. The composition of diagrams provides a group structure.



Proving that BVn,r (H) is a group

Theorem [Aroca & C. 2020]
BVn,r (H) is a group.

Idea of the proof.
Inspired by [Newman ’42], [Belk & Matucci ’14] and [Aroca ’18]

1. We define braided diagrams (⊃ (tree, braid, tree)-diagrams).

2. We describe a series of moves that states when two braided
diagrams are equivalent.

3. We show that a braided diagram is equivalent to a unique
“minimal” braided diagram.

4. There is a bijection between classes of equivalent braided diagrams
and the elements of BVn,r (H).

5. The composition of diagrams provides a group structure.



Proving that BVn,r (H) is a group (First step)

A braided diagram is a (good) planar projection of a directed graph

that only
contains the following types of vertices:

Main sinks Main sources Splits Merges

White vertices

and does not contain oriented loops:

Examples:

Orientation



Proving that BVn,r (H) is a group (First step)

A braided diagram is a (good) planar projection of a directed graph that only
contains the following types of vertices:

Main sinks Main sources Splits Merges

White vertices

and does not contain oriented loops:

Examples:

Orientation



Proving that BVn,r (H) is a group (First step)

A braided diagram is a (good) planar projection of a directed graph that only
contains the following types of vertices:

Main sinks Main sources Splits Merges

White vertices

and does not contain oriented loops:

Examples:

Orientation



Proving that BVn,r (H) is a group (First step)

A braided diagram is a (good) planar projection of a directed graph that only
contains the following types of vertices:

Main sinks Main sources Splits Merges

White vertices

and does not contain oriented loops:

Examples:

Orientation



Proving that BVn,r (H) is a group (Second step)
Two braided diagrams are equivalent if we can transform one into the other by
doing a series of the following 6 moves:



Proving that BVn,r (H) is a group (Second step)
Two braided diagrams are equivalent if we can transform one into the other by
doing a series of the following 6 moves:



Proving that BVn,r (H) is a group (Second step)
Two braided diagrams are equivalent if we can transform one into the other by
doing a series of the following 6 moves:



Proving that BVn,r (H) is a group (Second step)
Two braided diagrams are equivalent if we can transform one into the other by
doing a series of the following 6 moves:



Proving that BVn,r (H) is a group (Second step)
Two braided diagrams are equivalent if we can transform one into the other by
doing a series of the following 6 moves:



Proving that BVn,r (H) is a group (Second step)
Two braided diagrams are equivalent if we can transform one into the other by
doing a series of the following 6 moves:



Proving that BVn,r (H) is a group (Second step)
Two braided diagrams are equivalent if we can transform one into the other by
doing a series of the following 6 moves:



Proving that BVn,r (H) is a group (Third step)

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]
Every braided diagram is equivalent to a unique reduced braided diagram.

Idea of the proof:
I We construct a directed graph (rewriting system) as follows:

I The set of vertices is the set of braided diagrams.
I There is an edge from a braided diagram D to another D′ if D′ can

be obtained from the by performing a move in D.

I We prove that the rewriting system satisfies the following properties:
I It is terminating: every oriented path is finite.
I It is locally confluent: If D1 and D2 are reductions of a diagram D,

then there exists D′ which is a reduction of both D1 and D2.
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Idea of the proof.

• Elements of BVn,r (H) are represented by reduced
braided diagrams.
(We can not perform any move once we have pushed
all white vertices to the bottom tree).

• Reduced braided diagrams are diagrams (tree, braid, tree) with all the
vertices lying on the leaves of the bottom tree.
(We study the oriented path in a reduced diagram from a main source to
a main sink).
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Proving that BVn,r (H) is a group (Last step)

I The classes of braided diagrams with the
diagram composition have a group structure.

I The previous bijection is a group homomorphism.

The composition of two elements can be seen as
the composition of the corresponding reduced
braided diagrams:
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Finite generation

Theorem [Aroca & C. 2020]
BVn,r (H) is finitely generated if H is finitely generated.

We take the strategy that Higman used in 1974 to prove that Vn is
finitely generated and modify it to include braids and white vertices.

The depth of a full n-ary tree is the number of that it contains.

The depth of an element in BVn,r (H) is the depth of the trees of it
reduced braided diagram.

What Higman proves for Vn is that one can decompose an element of
depth d ≥ 3 using elements of depth < d . We do a similar thing for our
groups.
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Finite generation

Proposition [Aroca & C. 2020]
Every element of BVn,r (H) of depth d > 4 can be expressed as the

product of elements in BVn,r (Bn) of depth < d (in BVn,r (H) if H is f. g.).

Usage of ribbons
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Reducing the set of generators

Tree of 
depth 4 (or 3)

T

Thanks to [Brown, 1987] we know 
that these generators can be expressed 
as the product of  the following n elements: 
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Set of generators (when H is finitely generated)

Theorem [Aroca & C. 2020]
• BVn(Bn) is generated by at most 2n + 1 known elements.
• BVn(H) is generated by at most n + |{gen. of H}|+ (leaves of T )− 1
known elements (if the gen. of H are known).
• If H is a parabolic subgroup, we can further reduce the set of generators.

Generators for BV3(B3):

Finally, the proof can be easily adapted for BVn,r (H).
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Thank you!


