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Abstract

We investigate a group B, that includes Artin’s braid group B, and Thompson’s group
F. The clements of B are represented by braids diagrams in which the distances between
the strands are not uniform and, besides the usual crossing generators, new rescaling operators
shrink or stretch the distances between the strands. We prove that B, is a group of fractions,
that it is orderable, admits a nontrivial self-distributive structure, i.e., one involving the law
x(yz) = (xy)(xz), it embeds in the mapping class group of a sphere with a Cantor set of
punctures, and that Artin’s representation of By into the automorphisms of a free group
extends to B,.
© 2005 Elsevier Inc. All rights reserved.
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Braids

Two braids are equivalent if we can continuously deform one into
the other by fixing their end points, with the condition that strands
cannot touch each other.
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Product of two braids

The set of equivalence classes of braids with n strands together with this
product is a group, B,.
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Coverings of the cantor set and trees

n-adic Cantor set €,

Covers of €, <+ rooted subtrees of the infinite n-regular tree
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Braided Thompson's group BV,

The group BV, is the one that we obtain when the bijections in V5
between the leaves of two full binary trees are replace by braids:

O

e This group was independently introduced by Matthew Brin and Patrick
Dehornoy in 2006. They both showed that and
gave an explicit presentation.
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What about BV, ,?

e Indeed, the group BV, , can be defined in the same way as BV,.

o However, the definitions and techniques used by Brin and Dehornoy are
rather algebraic.

» Even though it seems plausible to apply this techniques to BV, ,, it
would be extremely tedious.

» Even proving that BV, , is a group would be heavy!

e Luckily, in the last decade, new combinatorial and topological methods
have been introduced.

» In our paper, we generalise BV, to a
and we use new approaches to prove that they
are groups and give a finite set of generators if H is finitely
generated.
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Proving that BV, ,(H) is a group

Theorem [Aroca & C. 2020]
BV, .(H) is a group.

Idea of the proof.

1. We define braided diagrams (D (tree, braid, tree)-diagrams).

2. We describe a series of moves that states when two braided
diagrams are equivalent.

3. We show that a braided diagram is equivalent to a unique
“minimal"” braided diagram.

4. There is a bijection between classes of equivalent braided diagrams
and the elements of BV, ,(H).

5. The composition of diagrams provides a group structure.
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A braided diagram is a (good) planar projection of a directed graph that only
contains the following types of vertices:

Main sinks ~ Main sources Splits Merges

and does not contain oriented loops: Q?

Examples:

Orientation
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Proving that BV, ,(H) is a group (Third step)

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]

Every braided diagram is equivalent to a unique reduced braided diagram.

Idea of the proof:

» We construct a directed graph (rewriting system) as follows:

P> The set of vertices is the set of braided diagrams.
» There is an edge from a braided diagram D to another D’ if D’ can
be obtained from the by performing a move in D.

» We prove that the rewriting system satisfies the following properties:

P It is terminating: every oriented path is finite.

P It is locally confluent: If Dy and D are reductions of a diagram D,
then there exists D’ which is a reduction of both D; and D;.
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Proving that BV, ,(H) is a group (Fourth step)

Lemma [Aroca & C. 2020]

There is a bijection between classes of equivalent braided diagrams and
classes of equivalent elements of BV, .(H).

Idea of the proof.

e Elements of BV, ,(H) are represented by reduced
braided diagrams.

(We can not perform any move once we have pushed
all white vertices to the bottom tree).

e Reduced braided diagrams are diagrams (tree, braid, tree) with all the
vertices lying on the leaves of the bottom tree.

(We study the oriented path in a reduced diagram from a main source to
a main sink).
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The depth of an element in BV, ,(H) is the depth of the trees of it
reduced braided diagram.

What Higman proves for V,, is that one can decompose an element of
depth d > 3 using elements of depth < d. We do a similar thing for our
groups.
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Finite generation

Proposition [Aroca & C. 2020]
Every element of BV,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B5) of depth < d (in BV, (H) if H is f. generated).
Tree 1
(depth = d)
Tree 1 N
(depth = d)
W Tree 3 (depth =d)
’ Tree 3 (depth =d)
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Tree 2
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Proposition [Aroca & C. 2020]

Every element of BV,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B5) of depth < d (in BV, (H) if H is f. generated).
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Every element of BV,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B5) of depth < d (in BV, (H) if H is f. generated).
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Finite generation

Proposition [Aroca & C. 2020]
Every element of BV,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B5) of depth < d (in BV, (H) if H is f. generated).
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Proposition [Aroca & C. 2020]

Every element of BV,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B5) of depth < d (in BV, (H) if H is f. generated).

Tree 1la
(depth =d-1)

Tree 1 Product of:
(depth = d) ri' "\ l . . l
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Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,(B,) of depth < d (in BV,(H) if H is f. generated).




Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Tree 1

Braid b

[ [TOT T[]
Tree 2




Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Tree 1

Braid b

[ [T T T T]
Tree 2




Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Tree 1

Braid b

[ [T T T T]
Tree 2

Treéz
[T T T T[]

Braid c

Spine
Braid c!
Tree 2




Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Tree 1

Braid b

[ [T T T T]
Tree 2

Treéz
[T T T T[]

Braid c

Spine
Braid c!
Tree 2




Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Tree 1

Braid b

[ [T T T T]
Tree 2

Treéz
[T T T T[]

Braid c

Spine
Braid c!
Tree 2




Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Tree 1

Braid b

[ [T T T T]
Tree 2

Treéz
[T T T T[]

Braid c

Spine
Braid c!
Tree 2
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Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Tree 1

Braid b

[ [T T T T]
Tree 2

Treéz
[ [[To [ [ T[]

Braid c

Spine
Braid c!
Tree 2
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Proposition [Aroca & C. 2020]
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Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]
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Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Tree 1

Braid b
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Treéz
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Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Product
of elements
of depth < d
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Tree 1

Braid b

[ []

Tree 2

[
Tree 2

[ ]

Braid c
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Product of:
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where O is a braid generator




Finite generation (dealing with white vertices)

Proposition [Aroca & C. 2020]

Every element of BV,,(H) of depth d > 4 can be expressed as the product of
elements in BV,,(B,) of depth < d (in BV,,(H) if H is f. generated).

Product
of elements
of depth < d

-

dept

Tree 1

Braid b

[ ]

Tree 2

[
Tree 2

e

Product of:

<D

where O is a braid generator

if His f.g.,
O is a generator of H
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(Big) set of generators for BV,(H)

if n=2 if n>2

Tree of T Tree of depth 1
depth 4 (or 3)

Braid generator | O

| T T Tree of depth 1

finite (leaves of T) -1 n
(but many!) (or #{Gen. of H})



Reducing the set of generators

Tree of
depth 4 (or 3)

Thanks to [Brown, 1987] we know
that these generators can be expressed
as the product of the following n elements:
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Lemma [Aroca & C. 2020]

T

Braid generator
T

We just need one of these generators

The proof is based in two ideas:
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Set of generators (when H is finitely generated)

Theorem [Aroca & C. 2020]
e BV,(B,) is generated by at most 2n + 1 known elements.

e BV, (H) is generated by at most n+ |{gen. of H}| + (leaves of T) — 1
known elements (if the gen. of H are known).

e If H is a parabolic subgroup, we can further reduce the set of generators.
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Set of generators (when H is finitely generated)

Theorem [Aroca & C. 2020]
e BV,(B,) is generated by at most 2n + 1 known elements.

e BV, (H) is generated by at most n+ |{gen. of H}| + (leaves of T) — 1
known elements (if the gen. of H are known).

e If H is a parabolic subgroup, we can further reduce the set of generators.

Generators for BV3(1B3):

WO 03Dl

Finally, the proof can be easily adapted for BV, ,(H).



Thank you!



