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Mapping class group

Surface S

Mapping class group | M(S, 3S) = mo(Homeo™ (S, 85))

To study mapping classes, look at their action on
curves in the surface.
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Complex of curves

S

Curve = isotopy class of non-degenerate simple closed curves

Complex of curves C(S) Simplicial complex

d-simplex: {co,¢1,...,cq} mutually disjoint curves.

{a} {8} {,8,6} {2y
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Complex of curves

S

Masur-Minsky (1998): C(S) is 6 -hyperbolic.

Aougab (2013)
Clay-Rafi-Schleimer (2013)

Hensel-Przytycki-Webb (2013)
Bowditch (2014)

M(S,0S5) actson C(S) by isometries
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—> Many interesting properties!!!
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Braid groups

D,

Bn — <O‘1,0’2, ey On—1

M(D,,,0D,,) = B,

Braid group on n strands

0i0j = 0,0 i —j]>2
0;0;0; — 040,03 |'L—j|:1

Algebraic and geometric tools to study braids
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Artin-Tits groups of spherical type

S

n>1 »  Braid groups!
n > 2
All these are
n >4 c
Garside groups

"

S
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Main questions

. n>1 In braid groups we can use geometric tools

. n>2 Can we extend this to all Artin-Tits groups
(of spherical type)?

Is there a natural algebraic analogue
of the complex of curves?
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Curves in the disc

D,

Every curve can
be rounded

Automorphisms with
support inside the curve

i

Automorphisms with
support inside the circle

i

Conjugate to an irreducible
standard parabolic subgroup

Subgroup generated by some
consecutive standard generators

g

g

Irred. parabolic subgroup aAxa™

1

Standard irred. parabolic subgroup Ax |
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Irreducible parabolic subgroups

bijection

a
v

Curvesin D, Proper irreducible parabolic subgroups

Algebraic notion!

In an Artin-Tits group of spherical type:

Proper subset of standard generators: X = {:131, - ,scr} C X

It is an Artin-Tits group
of spherical type

[Van der Lek, 1983]

Standard parabolic subgroup: Ax = (5(:1, Ce ,LIZT>

Parabolic subgroup: P=aAxa !

If X is connected, P is irreducible
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Complex of irreducible parabolic subgroups

Curves in D,

Curves are adjacent
if they are disjoint

bijection

a

v

Proper irreducible parabolic subgroups

What does this mean, algebraically?

This happens if and only if their centers commute!
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Complex of irreducible parabolic subgroups

C(Asx)

Simplicial complex

d-SimpIex: {Pf)a Pla S 7Pd}

Distinct irred. proper parabolic subgroups,

with pairwise commuting centers.

Algebraic definition.

C(B,) = C(ID,,) for braid groups.

Ay actson C(Ay) by isometries (through conjugation).

Conjecture: Is C(Ayx) §&-hyperbolic?
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Working algebraically

Techniques and properties which are geometrically easy...
... can be hard to show algebraically.

For instance, in braid groups:

The intersection of two parabolic subgroups is a parabolic subgroup

(because the intersection of families of disks is a family of disks)

Hence: Every element is contained in a minimal parabolic subgroup,
called its parabolic closure.

(just take the intersection of all parabolic subgroups containing it)

Is this true in all Artin-Tits groups of spherical type?

Is it true in other Garside groups?
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Parabolic closure (spherical Artin-Tits groups)

In Ag,

u €AY

positive elements = product of standard generators. A;

supp(u) = {Generators appearing in u}

(independent of the word representative)

Using Garside theory, can show:

_|_
u,v € Ay

acua = } = & Asupp(u) @7 = Asupp(v)

The support behaves well with conjugations!

Juan Gonzalez-Meneses ui%




Parabolic closure (spherical Artin-Tits groups)

u € AL supp(u) = {Generators appearing in u}
(positive element)
U € Asupp(u)
Aguon(u Asupp(v)
T == ()™ wem
o1
(parabolic) P Ay

Asupp(u) Is the parabolic closure of ©
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Parabolic closure (spherical Artin-Tits groups)

u  positive: ue A

supp(u)
_ » Q -
I conjugate to positive: x > u | positive
M 1 M
@ A
P supp (u)
a : :
T any element: X > U What conjugate is ok?
M 1 M
Qo .
P Agupp(u) | How to define its support?
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Support of an arbitrary element

(spherical Artin-Tits groups)

Every element in As: can be written in NP-normal form:

r=a 1p a and b positive

Support of an arbitrary element:
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supp(x) = supp(a) U supp(b)

(does not behave well with conjugations)

aNb=1




Recurrent elements (spherical Artin-Tits groups)

Swap conjugation:

_ swap _ 1
a”'b > bal=uaj] b

R(g;) Recurrent elements

Recurrent elements in
the conjugacy class of x.

(finite set)
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Parabolic closure (at last!) (spherical Artin-Tits groups)

[GM-Marin, 2020]

u,v € R( ) _
aua-l=uv } = & Asupp(u) @ = Asupp(v)
Q
T any element: €T U Recurrent
M L M
a .
P Agupp(u) | Parabolic closure

Theorem [CGGW, 2017]
Every element in an Artin-Tits group of spherical type admits a parabolic closure.
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of places in 21st-century math ics. In modem repr ion
theory, braid groups have come to play an important organizing role,
somewhat analogous to the role played by Weyl groups in classical
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Garside groups

Can we do the same in other Garside groups?

Problems: Relations are not always homogeneous.

Positive elements can be represented using different letters.  (support?)

What is the good notion of parabolic subgroup?

[Godelle, 2004]:  Garside group: (G Garside element: A

Given a balanced positive simple element ¢ [1 <0< A, Pref+((5) = Suff+((5)J

G5 — subgroup generated by the atoms in Pref+(5)

itis called a standard parabolic subgroup if Preft(8§) = Preft(A) N GY
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New definitions

Support of positive elements:

X = {$1, - ,:CT.} (atoms) Ax =x1V---Vax, (assume is balanced)

Closure: X = {atoms} N Pref™ (Ax)

Given a positive u: | supp(u) = {atoms in a representative of u}

Support of general elements: (same)

Swaps and recurrent elements: (same)

Parabolic subgroups: ~Godelle’s definiton. | A (for X C {atoms})
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Parabolic closure Garside groups

Theorem: [GM-Marin, 2020+] Let G be a Garside group, where lcm’s of atoms are balanced.

If support behaves well with conjugations, then every element admits a parabolic closure.
\

u,v € R(x) _
—1—y } = o Agupp(u) @ = Asupp (o)

Proposition: [GM-Marin, 2020+] Support behaves well with conjugations if and only if

u,v e GT

—1
aual=v } = @ Asupp(u) @ = Asupp(v)
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Complex braid groups

W C GLn(C) Finite complex reflection group. (generated by pseudo-reflections)

X =0C" \ (U A) (hyperplanes’ complement)

B=m (X/W) (complex braid group)

Natural generalizations of Artin-Tits groups of spherical type

[GM-Marin, 2020+]  Topological definition of parabolic subgroups.

Same notion as Godelle’s parabolic subgroups

(for those having a Garside structure)
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Complex braid groups

Cases:

® Those associated to real reflection groups are spherical Artin-Tits groups.

® B(r,1,n) are spherical Artin-Tits group of type B.

® B(de,e,n) canberelated to B(de, 1,n).

(d>1)

® Shephard groups.

Juan Gonzalez-Meneses

Can use standard monoids




Complex braid groups

Cases:

[ B(e, e, 7“) [Corran-Picantin, 2011] It admits the following Garside monoid:

1
t
to 2 83 54 Sr, Sy
t3 fe—1

Braid relations and...

® Exceptional cases are... exceptional.

Juan Gonzalez-Meneses

t1to = toty = tato = - = fote—1

Needs Godelles’ definition

Use Bessis’ monoids in some of them.




Complex braid groups

[GM-Marin, 2020+] Using the mentioned Garside structures, one has:

quR( )
aua =0

} = & Asupp(u) a” = Asupp(v)

Hence: Theorem [GM-Marin, 2020+]

And the intersection of parabolic subgroups is parabolic.

Every element in a complex braid group admits a parabolic closure.
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