
Some problems in Artin groups

Derek Holt

University of Warwick

Conference in memory of Patrick Dehornoy
8–10 September 2021

Derek Holt (University of Warwick) Problems in Artin groups September 2021 1 / 26



Contents

1 Definitions

2 Spherical Artin groups

3 Large and extra-large type Artin groups

4 Multifraction reduction

5 Interval groups of Coxeter and quasi-Coxeter elements

6 Bibliography

Derek Holt (University of Warwick) Problems in Artin groups September 2021 2 / 26



Definitions

The standard presentation for an Artin (or Artin-Tits) group is

〈a1, . . . , an | mij (ai , aj) = mij (aj , ai ) for each i 6= j〉

where
mij = mji ∈ N ∪ {∞}, mii = 1, mij ≥ 2 (i 6= j)

and m(a, b) denotes m alternating a’s and b’s, starting with a.

For example, with n = 3, m12 = 3, m23 = 2, m13 = 5, we have:

〈a1, a2, a3 | a1a2a1 = a2a1a2, a2a3 = a3a2, a1a3a1a3a1 = a3a1a3a1a3〉

Adding the relations a2i = 1 to this presentation defines the associated
Coxeter group, which is more commonly presented as

〈a1, . . . , an | (aiaj)
mij = 1 for each i , j〉

The number n of generators is the rank of the Artin or Coxeter group.
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Definitions (ctd)

We can represent an Artin (or Coxeter) group by its associated Coxeter
Diagram Γ, such as s s s s4

a b c d

which represents the Artin group A(Γ) =

〈a, b, c , d | aba = bab, bcbc = cbcb, cdc = dcd ,

ac = ca, ad = da, bd = db〉.

or the Coxeter group W (Γ), which has a2 = b2 = c2 = d2 = 1 as
additional relations.

Note that mij = 2 if there is no line drawn between vertices i and j , and
mij = 3 if there is an unlabelled line between them.
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Definitions (ctd)

An Artin group is of spherical or finite type if the associated Coxeter
group is finite.

For example, the braid groups have associated Coxeter group of type An.

It is of type FC (flag complex) if, for every subset I of {1, 2, . . . , n} such
that mij 6=∞ for all i , j ∈ I , the Artin group A(ΓI ) defined by the
subdiagram ΓI of Γ on the vertices in I is of spherical type.

The natural embedding A(ΓI )→ A(Γ) is known to be injective for all Artin

groups A(Γ) and all subsets I of {1, 2, . . . ,m} (v.d.Lek, 1983; Paris, 1997).

An Artin group is of large type if mij ≥ 3 for all i 6= j , and of extra-large
type if mij ≥ 4 for all i 6= j .

It is right-angled if mij = 2 or ∞ for all i 6= j .
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Spherical Artin groups

Spherical Type Artin groups have been studied by Breiskorn, Deligne,
Crisp, Paris, Dehormoy, etc.

They are linear (Krammer, Bigelow, Cohen, Wales).

They are bi-automatic (Thurston, Charney).

This implies that their word problems are solvable in quadratic time and
their conjugacy problems are solvable in exponential time.

Right-angled Artin groups (also known as graph groups) are bi-automatic.

Their word and conjugacy problems are solvable in linear time Liu,
Wrathall, Zeger, 1990; Crisp, Godelle, Wiest, 2009.

They embed into Coxeter groups (Hsu and Wise, 1999), and hence are
linear.
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Large and extra-large type Artin groups

Appel and Schupp proved in 1983–4 using small cancellation theory that
Artin groups of large type have solvable word and conjugacy problems.

Artin groups of (sufficiently) large type are shortlex automatic (Holt,
Rees, 2012, 2013); so their word problems are solvable in quadratic time.

These are automatic structures that can be readily computed and used to reduce

words to normal form in practice.

Following earlier proofs of biautomaticity for groups of extra-large type
(Peifer, 1996) and other large-type examples (Brady, McCammond,
2000), it was recently proved (Huang and Osajda, 2020) that all Artin
groups of large type are are systolic, and therefore biautomatic.

In contrast to those for the shortlex automatic structures, the normal forms for

these biautomatic structures are derived from geodesics in the associated systolic

complex rather than in the group generators, and they are on larger generating

sets, which necessarily include the empty word.
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The word problem in Artin groups

As we have seen, the word problem is solvable in Artin groups of spherical
type and of sufficiently large type.

This has also been proved for a few other types, including Type FC, affine
type, and locally non-spherical. In particular, all Artin groups of rank at
most 3 have solvable word problems.

But although we have automaticity for both spherical and large types, the
normal forms and the associated theory are different: the theory for
spherical types is based on calculations in certain types of monoids with
gcd, whereas for large type the arguments are more akin to those in small
cancellation theory.

It remains unclear how these ideas could be generalized in a uniform way,
and it is unknown whether the word problem is solvable in general Artin
groups.
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As far as I know, it is unknown whether A(Γ) is solvable for the Coxeter
diagram below.
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We shall now discuss an attempt by Patrick Dehornoy to address the
solvability of the word problem in general Artin groups.
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Multifraction reduction

Note that standard presentation of an Artin group G also defines a
monoid M, and G is the enveloping group U(M) of M.

In general a monoid M need not embed into U(M), even if M is
cancellative, but it was proved by L. Paris in 2001 that M → U(M) is an
embedding for all Artin monoids M.

In a sequence of papers, Patrick introduced and developed the theory of
multifraction reduction for the enveloping groups of certain types of
monoid known as gcd-monoids. These include the Artin monoids.

Definition

A multifraction is a sequence a1, a2, . . . , an of elements ai ∈ M (so we are
working over an alphabet that is usually infinite), which is denoted here by

a1/ · · · /an, and which represents the group element a1a
−1
2 a3 · · · a(−1)

n−1

n .
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A reduction process is defined consisting of a (usually infinite) set of
rewriting rules, each of which replaces a subsequence ai−1/ai/ai+1 of a
multifraction by bi−1/bi/bi+1, where the gcd properties of the monoid are
used to cancel common left or right divisors, and also to move such
divisors to the left.

By convention, if this results in the empty word being the final component of a

multifraction, then we delete that component.

The possible reductions are illustrated in the diagrams below.

r ai−1��
��*

bi−1
H
HHHj

r
x ′

?r
rai�

x

?

ai+1HH
HHj

r
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� bi+1��
��*
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In Artin monoids of spherical type, any two elements have a (least)
common right multiple, and this process reduces every multifraction to one
of length at most 2.

It can be regarded as a rewriting system (but with infinitely many letters
and rules).

In his first paper, Patrick proved that the process is convergent in an Artin
group (equivalently, words representing the same group element reduce to
the same irreducible multifraction) if and only if it is of type FC.

Definition

A rewriting system over the generators of a monoid M is
semi-convergent if and only if any word that represents the identity
element of M can be reduced to the empty multifraction by suitable
application of the rewriting rules.

For example the Dehn algorithm in a hyperbolic group is semi-convergent but

not usually convergent.

Derek Holt (University of Warwick) Problems in Artin groups September 2021 12 / 26



In Artin monoids of spherical type, any two elements have a (least)
common right multiple, and this process reduces every multifraction to one
of length at most 2.

It can be regarded as a rewriting system (but with infinitely many letters
and rules).

In his first paper, Patrick proved that the process is convergent in an Artin
group (equivalently, words representing the same group element reduce to
the same irreducible multifraction) if and only if it is of type FC.

Definition

A rewriting system over the generators of a monoid M is
semi-convergent if and only if any word that represents the identity
element of M can be reduced to the empty multifraction by suitable
application of the rewriting rules.

For example the Dehn algorithm in a hyperbolic group is semi-convergent but

not usually convergent.

Derek Holt (University of Warwick) Problems in Artin groups September 2021 12 / 26



In the second of the papers, Patrick made the following ambitious
conjecture.

Conjecture A

Multifraction reduction is semi-convergent in all Artin groups.

He went on to prove the following result, which follows from the
non-trivial result that it is decidable whether a given multifraction over an
Artin group is reducible or irreducible with the specified rewriting rules.

Proposition (Dehornoy, 2016)

If conjecture A is true, then the word problem is solvable in all Artin
groups.

He also formulated some slightly stronger versions of the conjecture that
were suitable for computer verification, and he tested them extensively by
computer on a wide variety of examples without finding a counterexample.
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The conjecture in large-type Artin groups

Can we at least prove this conjecture for Artin groups of (sufficiently) large
type?

Not quite, although we cannot disprove it, and we have not found an
explicit example in which we are unable to reduce a word representing the
identity to the empty word using multifraction reduction.

One difficulty resulted from the limitations on carrying out the reduction
when i = 1, when we can only replace a1/a2 by b1/b2 when a1 and a2
have a common right divisor.

We can circumvent this problem by allowing the insertion of an even
number of empty components on the left of the input multifraction before
we start the reduction process.
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In the following definition, we denote the empty word by ε, and (ε/)k

denotes the multifraction ε/ · · · /ε of length k .

Definition

A multifraction a1/ · · · /an reduces to b1/ · · · /bm using multifraction
reduction with k-padding if the multifraction (ε/)2k/a1/ · · · /an reduces
to b1/ · · · /bm.

Theorem (Dehornoy, Holt, Rees, 2018)

Let G be an Artin group of sufficiently large type, and let a1/ · · · /an be a
multifraction that represents the identity element of G. Then a1/ · · · /an
can be reduced to the empty multifraction using multifraction reduction
with k-padding.

In fact we can take k = 3`(`+ 2)/4, where ` =
∑n

i=1 `(ai ), and `(ai ) is
the length of ai as a word in the generators of the Artin monoid.
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Interval groups of Coxeter and quasi-Coxeter elements

A Coxeter element in a Coxeter group G = W (Γ) of rank n is a product,
in some order, of the n simple reflections. These elements form a single
conjugacy class in G .

Coxeter elements w can be represented as a product of n (not necessarily
simple) reflections in different ways, and the relations arising from the
different expressions for w give rise to a presentation of a group G ([1,w ]),
known as the interval group.

The group G ([1,w ]) is a quotient by a single extra relation of the Artin
group A(Γw ) of a Carter diagram Γw , and G ([1,w ]) turns out to be
isomorphic to the Artin group A(Γ) for all Coxeter elements w .
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Example

G = W (A2) = 〈a, b | a2 = b2 = 1, aba = bab〉, w = ab.

We have w = ab = ca = bc, where c = aba = bab, and

G ([1,w ]) ∼= 〈a, b, c | ab = ca = bc〉 ∼= 〈a, b | aba = bab〉 = A(A2).

A quasi-Coxeter element w0 ∈ G = W (Γ) is an irreducible product of n
(not necessarily simple) reflections that generate W (Γ), and the interval
group G ([1,w0]) can be defined in the same way.

The element w0 is called a proper quasi-Coxeter element if it is not a
Coxeter element. For such elements it is not always true that
G ([1,w0]) ∼= A(Γ).
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In recent work, Baumeister, Neaime and Rees have computed presentations
of G ([1,w0]) for proper quasi-Coxeter elements in the case Γ = Dn.

There are b n2c conjugacy classes of quasi-Coxeter elements in Dn (including the

Coxeter elements), and this is the only infinite family of finite Coxeter groups that

have proper quasi-Coxeter elements for all n.

To state their main result, we need some definitions. First we define the
cyclic commutator (cc) and twisted cyclic commutator (tc) of a
sequence of elements y1, . . . , yn in a group.

Definition

cc(y1, y2, . . . , yn) := [y1,wynw
−1] where w = y2 · · · yn−1

tc(y1, y2, . . . , yn)t := [y1,wynw
−1] where w = y−12 · · · y

−1
t+1yt+1 · · · yn−1

We also need to define some specific Coxeter diagrams.
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Some Coxeter Diagrams
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Theorem (Baumeister, Neaime, Rees)

Let w0 be a proper quasi-Coxeter element in W (Dn) for some n ≥ 4.
Then, for some r , s ≥ 0 with 4 + r + s = n, we have

G ([1,w0)]) ∼= A(∆r ,s)/〈〈tc(b1, b2, b3, b4)1〉〉

(where tc(b1, b2, b3, b4)1 = [b1, b
−1
2 b3b4b

−1
3 b2]).

There are b n−2
2 c possible choices of (r , s) in the above result, each of which

corresponds to a unique conjugacy class of quasi-Coxeter elements in W (Dn). So,

if we include the Coxeter elements, then we have a total of b n2c classes.

When w is a Coxeter element, we have

G ([1,w ]) ∼= A(Dn) ∼= A(∆r ,s)/〈〈cc(b1, b2, b3, b4)〉〉
∼= A(∆n)/〈〈cc(a1, a2, . . . , an)〉〉

for all r , s ≥ 0 with 4 + r + s = n.
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Some further isomorphisms

The second and third of these isomorphisms were proved earlier (Haley,
Hemminger, Peck, 2017) in connection with their work on cluster
algebras related to Coxeter groups.

We can now generalize the third of the isomorphisms to quasi-Coxeter
elements.

Theorem

Let w0 be a proper quasi-Coxeter element in A(Dn) for some n ≥ 4. Then,
for some r ≥ s ≥ 0 with 4 + r + s = n, we have

G ([1,w0]) ∼= A(∆r ,s)/〈〈tc(b1, b2, b3, b4)1〉〉
∼= A(∆n)/〈〈tc(a1, a2, . . . , an)s+1〉〉

Question

Do these groups have solvable word problems?
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Proving the isomorphisms

In the result above, we need to prove isomorphisms between two groups
defined by finite presentations G = 〈X | R〉 and H = 〈Y | S〉.
Our technique for achieving this can be summarised as follows.

1 Define maps φ : X → H and ψ : Y → G .

2 Use the relations S of H to verify that the images under φ of the
relations R of G are satisfied in H, and similarly for ψ : H → G . This
proves that φ and ψ extend to homomorphisms G → H and H → G
respectively.

3 Use the relations R of G to verify that ψ(φ(x)) = x for for all x ∈ X ,
and the relations S of H to verify that φ(ψ(y)) = y for all y ∈ X .
This proves that φ and ψ are mutually inverse isomorphisms.
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But how do we come up with the maps φ and ψ in the first step?

We did this essentially by trial and error, starting with the smallest cases.
The verifications in the second and third steps can, again in small cases,
be checked quickly using the KBMAG package (available as a standalone
or from GAP or Magma), which implements the Knuth-Bendix rewriting
procedure.

But if KBMAG fails to verify a relation, then that does not (usually) prove
that it does not hold; we may need to run the procedure for longer.

Eventually we succeeded in constructing the isomorphisms in enough small
cases to enable us to guess the maps φ and ψ in general, and we also
succeeded in completing the verifications using inductive proofs without
computer assistance.
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