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Dedication

• I dedicate this lecture to the memory of
our friend and colleague Patrick Dehornoy (1952–2019)

• I have already expressed what Patrick meant to me at his funeral and in the tribute

Souvenirs de Patrick Dehornoy (1952–2019)

(written with Serge Grigorieff, Philippe Toffin, François Digne and Pierre-Louis Curien)
which appeared in Gazette des Mathématiciens 164 (2020), 63–69.



Patrick the Traveller

Patrick and me travelling in Greece (1974)



Patrick the Builder

Patrick working on his house (1982)



Patrick the Player

Patrick absorbed in solving a difficult problem!



Patrick in Montréal

With Christophe Reutenauer in Montréal (2017)

Now back to mathematics...



Synopsis

...Back to the braid groups
that kept Patrick busy over

more than two decades.

• Here is an outline of my talk.

I I recall how to construct an action of B2n+2 on the free group F2n.

I Linearizing the previous action, we deduce a homomorphism
f̄ : B2n+2 → Sp2n(Z) into the symplectic modular group.

I Recall what Steinberg groups are and
lift f̄ to a homomorphism f̃ : B2n+2 → St(Cn,Z) into the integral Steinberg
group of type Cn (this is joint work with François Digne).

I Special cases n = 1, 2.

I A few results in the general case (work in progress with François Digne).
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A ramified double covering of a disk

The idea of the braid group B2n+2 acting on the free group F2n goes back to work of
Magnus & Peluso, Birman (1969)...

• Consider a surface Σ of genus n ≥ 1, which is invariant under the hyperelliptic
involution, which is the reflection in the line L. This line intersects Σ in 2n + 2 points.

• The quotient of Σ by the hyperelliptic involution is a sphere. We thus obtain a
double covering p : Σ→ S2 of the sphere with 2n + 2 ramification points.

• Removing a small disc (“hole”) from the quotient, we obtain a double covering
p : Σ0 → D of a disk D with 2n + 2 ramification points.



An action of the braid group B2n+2 on the free group F2n

• The braid group B2n+2 can be realized as the mapping class group of the disk D
with 2n + 2 distinguished points. Each element of B2n+2 can be represented as an
orientation-preserving homeomorphism fixing each point of the boundary of D and
permuting the distinguished points.

• Lifting each such homeomorphism to a homeomorphism of Σ0 (fixing the two holes)
induces a group homomorphism from B2n+2 to the mapping class group of Σ0, hence
to the automorphism group of the fundamental group π1(Σ0). The latter is the
free group generated by the loops a1, . . . , an, b1, . . . , bn of the figure.



The homomorphism B2n+2 → Aut(F2n)

• Representing each generator σ1, . . . , σ2n+1 of B2n+2 by a homeomorphism of D,
lifting the latter to Σ0 and computing the action of each lift on the loops a1, . . . , an,
b1, . . . , bn yields a homomorphism f : B2n+2 → Aut(F2n).

• We have f (σi ) = ui , where u1, . . . , u2n+1 are the following automorphisms of the
free group F2n = 〈a1, . . . , an, b1, . . . , bn〉.

(a) The automorphism u1 fixes all generators, except b1 for which

u1(b1) = a1b1 .

(b) The automorphism u2n+1 fixes all generators, except bn for which

u2n+1(bn) = bnan .

(c) The automorphism u2i (1 ≤ i ≤ n) fixes all generators, except ai for which

u2i (ai ) = b−1
i ai .

(d) The automorphism u2i+1 (1 ≤ i ≤ n − 1) fixes all generators, except bi
and bi+1 for which we have

u2i+1(bi ) = biaia
−1
i+1 and u2i+1(bi+1) = ai+1a

−1
i bi+1 .



The case n = 1 - An exact sequence

• What can we say about the image and the kernel of f : B2n+2 → Aut(F2n) for n = 1?

• Together with Christophe Reutenauer (Ann. Mat. Pura Appl. 2007) we showed that
the homomorphism f : B4 → Aut(F2) fits into the exact sequence of groups

1 −→ Z4 −→ B4
f−→ Aut(F2)

ε−→ {±1} −→ 1.

Here Z4 is the center of B4: it is the infinite cyclic group generated by ∆2
4,

where ∆4 = (σ1σ2σ3)(σ1σ2)σ1,

• Conclusion. The kernel of f is the center Z4 of B4 and its image is a subgroup of
index 2 of the automorphism group Aut(F2).

• What is the homomorphism ε : Aut(F2)→ {±1} exactly?



The case n = 1 - A diagram of exact sequences

• The map f : B4 → Aut(F2) fits into the commutative diagram of exact sequences

1→ Z4 −→ B4
f−→ Aut(F2)

ε−→ {±1} → 1

↓ ∼= ↓ q ↓ ab ↓ id

1→ 2Z3 −→ B3
f ′−→ GL2(Z)

det−→ {±1} → 1
Here

I The vertical homomorphism ab is the abelianization map and ε = det ◦ ab.

I The vertical homomorphism q : B4 → B3 is defined by q(σ1) = q(σ3) = σ1 and
q(σ2) = σ2. We have q ◦ i = id, were i : B3 → B4 is the standard inclusion.
(Note that there is no retraction of i : Bn → Bn+1 when n > 3.)

I The homomorphism f ′ : B3 → GL2(Z) is determined by

f ′(σ1) =

(
1 1
0 1

)
and f ′(σ2) =

(
1 0
−1 1

)
.

I The group 2Z3 is the subgroup of index 2 of the center of B3: it is an infinite
cyclic group generated by ∆4

3, where ∆3 = (σ1σ2)σ1.

• Keep in mind. The homomorphism f vanishes on the center of B4 and
the image of ab ◦f : B4 → GL2(Z) is SL2(Z) = Ker(det).
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Symplectic matrices

Back to arbitrary n ≥ 1. Let us give two (easy to prove) results on the homomorphism

f : B2n+2 → Aut(F2n)

and its linearization
f̄ = ab ◦f : B2n+2 → GL2n(Z).

• Proposition. For any n ≥ 1,

(a) f (Z2n+2) = 1, where Z2n+2 is the center of B2n+2.

(b) Im
(
f̄ : B2n+2 → GL2n(Z)

)
⊂ Sp2n(Z).

Recall that the symplectic modular group Sp2n(Z) is the group of matrices
M ∈ GL2n(Z) such that

MT

(
0 In
−In 0

)
M =

(
0 In
−In 0

)
,

where MT is the transpose of M and In is the identity matrix of size n.

• Remarks.

I For n = 1 we have Sp2(Z) = SL2(Z).

I It is well known that elements of the mapping class group of a surface Σ preserve
the algebraic intersection pairing on H1(Σ,Z), which is a symplectic form.
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The case n = 2 - Theorem 1

We now consider the special case n = 2 for the composite homomorphism

f̄ = ab ◦f : B6 → Sp4(Z).

• In the Special issue of the Journal of Algebra in honor of Patrick Dehornoy (2020)
we established the following result.

Theorem 1. (a) The map f̄ : B6 → Sp4(Z) is surjective.

(b) Its kernel is the normal subgroup of B6 generated by the two elements

(σ1σ2σ1)4 and (σ1σ2σ1)2(σ1σ
−1
3 σ5)(σ1σ2σ1)−2(σ1σ

−1
3 σ5).

This yields a braid-type presentation of Sp4(Z) as a quotient of B6.

• For the proof we make use of the corresponding Steinberg group.



Steinberg groups - Generalities

• R. Steinberg (1962): For any irreducible root system Φ he defined the now-called
Steinberg group by generators and relations. This group is by definition an extension
of the simple complex algebraic group G of type Φ.

• M. Stein (1971) extended Steinberg’s construction over any commutative ring R,
leading to the Steinberg group St(Φ,R).

• For R = Z (the ring of integers) St(Φ,Z) has the following presentation:

I Generators: xγ (γ ∈ Φ).

I Relations: if γ, δ ∈ Φ such that γ + δ 6= 0, then

[xγ , xδ] =
∏

x
c
γ,δ
i,j

iγ+jδ ,

where i and j are positive integers such that iγ + jδ belongs to Φ and

the exponents cγ,δi,j are integers depending only on the structure of

the Chevalley group G(Z).

The Steinberg group comes with a natural projection π : St(Φ,Z)→ G(Z).
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Steinberg groups - The root system An

Let us start with the simplest case. Though simple, it is important because of its link
with algebraic K -theory.

• The corresponding Chevalley group is G(Z) = SLn(Z).

• SLn(Z) is generated by the elementary matrices

ei,j = In + Ei,j (1 ≤ i 6= j ≤ n)

where Ei,j is the n × n matrix which has all entries equal to 0 except the (i , j)-entry
which is equal to 1.

• The Steinberg group St(An,Z). Often denoted by Stn(Z), it has a presentation
with generators

xi,j (1 ≤ i 6= j ≤ n)

and relations

[xi,j , xk,`] =

{
xi,` if j = k and i 6= `,

1 if j 6= k and i 6= `.

These relations are the “natural” ones between the generators ei,j of SLn(Z).



Steinberg groups - The root system Cn

Th Cn-case is more involved because of its more complicated root system.

• Consider the Euclidean real vector space Rn and an orthonormal basis {ε1, . . . , εn}.
The roots of the root system Cn are ±εi ± εj (short roots) and ±2εi (long roots),
where 1 ≤ i 6= j ≤ n.

• Generators of Sp2n(Z):

I Xi,j = I2n + Ei,j − Ej+n,i+n (1 ≤ i 6= j ≤ n), corresponding to the root εi − εj ,
I Yi,j = I2n + Ei,j+n + Ej,i+n (1 ≤ i 6= j ≤ n), corresponding to εi + εj ,

I Y ′i,j = Y T
i,j (1 ≤ i 6= j ≤ n), corresponding to −εi − εj ,

I Zi = I2n + Ei,i+n (1 ≤ i ≤ n), corresponding to 2εi ,

I Z ′i = ZT
i (1 ≤ i ≤ n), corresponding to −2εi .

Here Ei,j is the 2n × 2n matrix which has all entries equal to 0 except the (i , j)-entry
which is equal to 1.

(These generators are obtained as follows: consider the Lie algebra of Sp2n(C) with its
root space decomposition; in each root space take a generator and exponentiate it.)

• In order to obtain a presentation of the Steinberg group St(Cn,Z),
we compute the commutators of all pairs of above generators.
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The symplectic Steinberg group

• Presentation of the Steinberg group St(Cn,Z):

I Generators: xi,j , yi,j , y
′
i,j , zi , z

′
i (1 ≤ i 6= j ≤ n).

I Relations: (the subscripts i , j , k ∈ {1, . . . , n} are pairwise distinct)

yi,j = yj,i , y ′i,j = y ′j,i ,

[xi,j , xj,k ] = xi,k , [xi,j , yj,k ] = yi,k , [xi,j , y
′
i,k ] = y ′−1

j,k ,

[xi,j , yi,j ] = z2
i , [xi,j , y

′
i,j ] = z ′−2

j ,

[xi,j , zj ] = ziyi,j = yi,jzi , [xi,j , z
′
i ] = z ′j y

′−1
i,j = y ′−1

i,j z ′j ,

[yi,j , z
′
i ] = xj,iz

−1
j = z−1

j xj,i , [y ′i,j , zi ] = x−1
i,j z ′−1

j = z ′−1
j x−1

i,j .

All remaining pairs of generators commute, except (xi,j , xj,i ), (yi,j , y
′
i,j ) and

(zi , z
′
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1 for all i .
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Lifting f̄ : B2n+2 → Sp2n(Z) to St(Cn,Z)

• Proposition (joint with François Digne).

(a) There exists a unique homomorphism f̃ : B2n+2 → St(Cn,Z) such that

f̃ (σ2i ) = z ′−1
i (i = 1, . . . , n),

f̃ (σ2i+1) = zizi+1y
−1
i,i+1 (i = 1, . . . , n − 1),

f̃ (σ1) = z1 , f̃ (σ2n+1) = zn ,

(b) The homomorphism f̃ lifts f̄ : B2n+2 → Sp2n(Z):

f̄ = π ◦ f̃ .

(c) The homomorphism f̃ is surjective if and only if n ≤ 2.

• We now return to the case n = 2.



The case n = 2 - Theorem 2 implies Theorem 1

• Theorem 2. (a) The map f̃ : B6 → St(C2,Z) is surjective.

(b) Its kernel is the normal subgroup N of B6 generated by the element

ω = (σ1σ2σ1)2(σ1σ
−1
3 σ5)(σ1σ2σ1)−2(σ1σ

−1
3 σ5).

• Theorem 2 implies Theorem 1 (recalled below) in view of

Ker (π : St(C2,Z)→ Sp2n(Z)) = 〈w4
1 〉 and f̃ (σ1σ2σ1) = w1 ,

where w1 = z1z
′−1
1 z1.

Theorem 1. (a) The map f̄ : B6 → Sp4(Z) is surjective.

(b) Its kernel is the normal subgroup of B6 generated by ω and (σ1σ2σ1)4.



The case n = 2 - Proof of Theorem 2

• Recall. Let N be the normal subgroup of B6 generated by

ω = (σ1σ2σ1)2(σ1σ
−1
3 σ5)(σ1σ2σ1)−2(σ1σ

−1
3 σ5).

• Theorem 2 is a consequence of the following two lemmas.

• Lemma 1. We have f̃ (N) = 1.

Proof. It suffices to check f̃ (ω) = 1. Indeed,

f̃ (ω) = w2
1 y1,2 w

−2
1 y1,2 = y−1

1,2 y1,2 = 1.

• By Lemma 1 the map f̃ induces a homomorphism f̃ : B6/N → St(C2,Z). It is
surjective.

Lemma 2. There exists a homomorphism ϕ : St(C2,Z)→ B6/N such that ϕ ◦ f̃ = id.

Hence, f̃ : B6/N → St(C2,Z) is also injective.



The case n = 2 - About Lemma 2

• Recall. Let N be the normal subgroup of B6 generated by

ω = (σ1σ2σ1)2(σ1σ
−1
3 σ5)(σ1σ2σ1)−2(σ1σ

−1
3 σ5).

• Lemma 2. There exists a homomorphism ϕ : St(C2,Z)→ B6/N such that

ϕ ◦ f̃ = id. Modulo N we have

ϕ(z1) ≡ σ1 , ϕ(z2) ≡ σ5 , ϕ(z ′1) ≡ σ−1
2 , ϕ(z ′2) ≡ σ−1

4 ,

ϕ(y1,2) ≡ σ1σ
−1
3 σ5 ,

ϕ(y ′1,2) ≡ (σ1σ2σ5σ4)(σ1σ
−1
3 σ5)−1(σ1σ2σ5σ4)−1,

ϕ(x1,2) ≡ (σ5σ4)(σ1σ
−1
3 σ5)(σ5σ4)−1,

ϕ(x2,1) ≡ (σ1σ2)(σ1σ
−1
3 σ5)(σ1σ2)−1.

Proof. One checks that the image under ϕ of each defining relation of St(C2,Z) is

satisfied in B6/N. For instance, for the relation [y1,2, z ′1] = x2,1 z
−1
2 , one has

[
ϕ(y1,2), ϕ(z ′1)

]−1
ϕ(x2,1)ϕ(z−1

2 ) = ω ∈ N.

• Note the ubiquity of the braid word σ1σ
−1
3 σ5. We will generalize it in the next slide.



An element of the kernel of f̃ : B2n+2 → St(Cn,Z)

Back to the general case n ≥ 3. The following is joint work with François Digne.

• Let ∆2
k ∈ Bk be the positive braid generating the center of the group Bk of braids

with k strands. It is defined inductively by ∆2
2 = σ2

1 and

∆2
k+1 = ∆2

k (σkσk−1 · · ·σ2σ1)(σ1σ2 · · ·σk−1σk ).

Consider the following elements of the braid group B2n+2:

αn = ∆2
3∆2

5 · · ·∆2
2n−1

and
βn = σ1σ

−1
3 · · ·σ(−1)n

2n+1 .

• Proposition (joint with F. Digne). For all n ≥ 2 we have

f̃
(
αnβnα

−1
n βn

)
= 1 ∈ St(Cn,Z).



Questions

I finish by mentioning work in progress with François Digne.

• We have just remarked that αnβnα
−1
n βn belongs to the kernel of

f̃ : B2n+2 → St(Cn,Z).

Observe that for n = 2,

α2β2α
−1
2 β2 = ω = (σ1σ2σ1)2(σ1σ

−1
3 σ5)(σ1σ2σ1)−2(σ1σ

−1
3 σ5) ∈ B6

generates the kernel of f̃ : B6 → St(C2,Z) as a normal subgroup.

• Question 1. When n ≥ 3, do αnβnα
−1
n βn and its conjugates generate the kernel of

f̃ : B2n+2 → St(Cn,Z)?

• Question 2. What is the image of f̃ : B2n+2 → St(Cn,Z)?



Merci pour votre attention

Thank you for your attention
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