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The setting
We look for a setting which holds for a spherical Artin monoid, and
for the dual monoid of a finite complex reflection group.
Let M be a Garside monoid with Garside element ∆, and with an
additive length function l : M → N. We assume M is generated by
the set S of its elements of length 1, which form a finite set (the
atoms).
We call standard parabolic a submonoid stable by left and right
divisors and left and right lcms.
We call I ⊂ S saturated if it is the set of atoms of a standard
parabolic submonoid (equivalently if MI := 〈I 〉 is standard
parabolic).
In general for I ⊂ S we denote by I the smallest saturated subset
of atoms which contains I .

We assume that for any I ⊂ S the right and left lcms of I are
equal and equal to the lcm of I .

We denote ∆I = ∆I that lcm. It is a Garside element for MI .

I -head and tail

For b ∈ M we write b = H(b)T (b) where H(b) is the first term of
the Garside normal form of b and T (b) is the rest.

Proposition

For I saturated, any b ∈ M has a unique maximal left-divisor
HI (b) in MI .

Proof.

The right lcm of two divisors of b in MI is in MI .

We define TI (b) by b = HI (b)TI (b). We say that b is I -reduced if
HI (b) = 1.



The ribbon category

We call ribbon category the category with objects the saturated
subsets of S and maps I

g−→ when g ∈ M is I -reduced and I g ⊂ S .
The target of this map is I g . We will see that I g is automatically
saturated.
The ribbon category makes sense in a more general context, for
example in any Artin group with the only condition that the
monoids MI be spherical.

Definition

For I saturated and s ∈ S − I , we define vs,I ∈ M and J ⊂ I ∪ {s}
by the equalities ∆I vs,I = vs,I∆J = ∆I∪{s}(= ∆I∪{s}).

Note that since ∆I∪{s} does an automorphism of I ∪ {s}, it

conjugates a saturated part to another one.

For a, b ∈ M we write a 4 b if a left-divides b.

Lemma (Atoms of the ribbon category)

Assume that I
g−→ is in the ribbon category and that s ∈ S

left-divides g. Then vs,I 4 g.

Proof.

We have ∆Ig = g∆g
I . Thus s 4 ∆Ig , thus ∆I∪{s} 4 ∆Ig , thus

vs,I = ∆−1
I ∆I∪{s} 4 g .

The fact that a map in the ribbon category is a product of such
atoms implies that its target is saturated.



Lemma (I -head and I -tail preserved by ribbons)

Let I
g−→ be in the ribbon category and let h ∈ M. Then

TI (gh) = gTI g (h) and HI (gh)g = HI g (h).

Proof.

Let s ∈ I and set s ′ := sg . Both formulae clearly follow if we show
that it is equivalent that s 4 gh or that s ′ 4 h.
Now from sg = gs ′ it follows that the right lcm of s and g divides
sg , thus it must be equal to sg (because its length is at least
l(g) + 1). Thus s 4 gh is equivalent to sg 4 gh or equivalently
gs ′ 4 gh which is finally equivalent to s ′ 4 h.

Proposition

If I
g−→ is in the ribbon category, so are all the terms of its Garside

normal form.

Proof.

It is sufficient to prove that I
H(g)−−−→ and IH(g) T (g)−−−→ are in the

ribbon category.
For the first fact, since HI (g) = 1 implies HI (H(g)) = 1 it is
sufficient to prove that IH(g) ⊂ S . Let s ∈ I . Then sg ∈ S is
equivalent to g 4 sg which gives
H(g) 4 H(sg) = H(sH(g)) 4 sH(g) which implies sH(g) ∈ S .
For the second fact, since (IH(g))T (g) = I g ⊂ S , it is sufficient to
show that T (g) is IH(g)-reduced. By Lemma (I -head preserved)
with H(g),T (g) for g , h, we get that
HIH(g)(T (g)) = HI (H(g)T (g))H(g) = 1.



Proposition

If I
g−→ and I

g ′−→ are in the ribbon category, then so is

I
left-gcd(g ,g ′)−−−−−−−−→

Proof.

It is clear that HI (left-gcd(g , g ′)) = 1 so we have to show that
I left-gcd(g ,g ′) ⊂ S . The proof is by induction on max(l(g), l(g ′)). If
left-gcd(g , g ′) 6= 1, then there is some a ∈ S such that a 4 g and
a 4 g ′. By Lemma(atoms of the ribbon category) we have
v(a, I ) 4 g and v(a, I ) 4 g ′. We conclude by induction by
replacing g by v(a, I )−1g and g ′ by v(a, I )−1g ′.

Proposition

If I
g−→ and I

g ′−→ are in the ribbon category, then so is

I
right-lcm(g ,g ′)−−−−−−−−−→.

Proof.

We first show that I right-lcm(g ,g ′) ⊂ S . Indeed, if g 4 sg , and
g ′ 4 sg ′ then right-lcm(g , g ′) 4 s right-lcm(g , g ′). It remains to
show that k = right-lcm(g , g ′) is I -reduced. Note that Lemma

(I -tail preserved) implies that if I
g−→ is in the ribbon category and

g 4 k then g 4 TI (k). It follows that g , g ′ left-divide TI (k), thus
k = right-lcm(g , g ′) divides TI (k) which proves that k is
I -reduced.



Proposition (Ribbon prefix)

For I ⊂ S, let g ∈ M be I -reduced. Then there is a unique
maximal prefix h of g in the ribbon category (with same source as
g, that is such that I h ⊂ S). If we denote cI (g) this prefix,
cI (g)−1g is I cI (g)-reduced and there is equivalence between:

(i) cI (g) = 1.

(ii) The left descent set of ∆Ig is I .

Proof.

The existence of cI (g) is a consequence of the fact that the ribbon
category is stable by right-lcms. The fact that cI (g)−1g is
I cI (g)-reduced is an immediate consequence of Lemma
(preservation of head).
We finally prove the equivalence of (i) and (ii) by observing that
cI (g) 6= 1 is equivalent to the existence of t /∈ I such that vt,I 4 g ,
which is in turn equivalent to ∆I∪{t} 4 ∆Ig which is equivalent to
t being in the left descent set of ∆Ig .

Proposition (Positive conjugacy)

Let g ∈ M, b ∈ MI be such that g is I -reduced and such that
bg ∈ M. Assume further that ∆I 4 bi for some integer i . Then
I g ⊂ S.

Proof.

We first note that the assumption bg ∈ M, that we write bg = gu
for some u ∈ M, implies bkg = guk for any k > 0; thus replacing
b by some power we may assume ∆I 4 b, say b = ∆I v .
We have thus the equality ∆I vg = gu. If s ∈ S , s 4 g it follows
that ∆I∪{s} left-divides both sides thus vs,I 4 vg .
We now show by induction on the length of v that vs,I 4 g . We
may write v = tv ′ with t in I . Since vg is left-divisible by vs,I and
by t, it is divisible by their right-lcm, which is equal to tvs,I . Thus
vs,I 4 v ′g , and we conclude by induction.
We now conclude by induction on the length of g , since replacing
g by v−1

s,I g and I by J = I vs,I all the assumptions remain.



We now denote by G the group of fractions of the Garside monoid
M. We call standard parabolic subgroups the subgroups GI

generated by a standard parabolic monoid MI , and parabolic
subgroups the conjugates of the standard parabolic subgroups.

Definition

We say that p−1q is a left reduced fraction for b ∈ G if b = p−1q
with p, q ∈ M and the left-gcd of p and q is trivial.

Symmetrically there are right reduced fractions pq−1. “reduced
fraction” will mean left reduced fraction.
The left reduced fraction for an element is unique; more precisely if
p−1q is reduced and p−1q = p′−1q′ there exists d such that
p′ = dp and q′ = dq.
If an element of GI has p−1q as its reduced fraction in G , then
p, q ∈ MI since there is a reduced fraction a−1b in GI and a < p
and b < q.

Lemma (Head in MI )

Let b ∈ GI , g ∈ M be such that bg ∈ M. Then bHI (g) ∈ MI .

Proof.

Write bg = b′, and write g = HI (g)TI (g). Let bHI (g) = pq−1

where the right-hand side is a right reduced fraction in GI

(p, q ∈ MI ). From the equality of the two fractions
TI (g)b′TI (g)−1 = pq−1 we deduce q 4 TI (g) which implies q = 1
since TI (g) is I -reduced.



We can now weaken the assumptions in Proposition (positive
conjugacy)

Proposition (positive conjugate implies tail ribbon)

Let b ∈ MI , g ∈ M such that bg ∈ M. Then bHI (g) ∈ MI . Assume
that for some i > 0 we have ∆i

I 4 b. Then ITI (g) ⊂ S.

Proof.

By Lemma (head in MI ) bHI (g) is still in MI . Since TI (g) is
I -reduced we can now apply Proposition (positive conjugacy) with
b replaced by bHI (g) and g replaced by TI (g) and we get the
result.

Lemma (conjugating ∆I conjugates I )

Let ∆k
I be central in MI . If (∆k

I )g ∈ MJ for g ∈ M, then
ITI (g) ⊂ J.

Proof.

We have (∆k
I )HI (g) = ∆k

I , thus (∆k
I )TI (g) ∈ MJ . By the

Proposition on positive conjugates we get ITI (g) ⊂ S , hence
ITI (g) ⊂ J.

Proposition (conjugate parabolics)

For two saturated subsets I , J ⊂ S we have equivalence between:

(i) There is g ∈ G such that G g
I = GJ .

(ii) There exist an integer k > 1 and g ∈ G such that
(∆k

I )g = ∆k
J .

(iii) There is g ∈ G such that I g = J



Proof.

Clearly that (iii) implies (ii) for any k . Let us show that (ii) implies
(iii). We can raise to some power the equality (∆k

I )g = ∆k
J to

ensure ∆k
I is central in MI . By multiplying g by some central

power of ∆ we may assume g ∈ M. By Lemma (conjugating ∆I

conjugates I ) we have ITI (g) = J ′ ⊂ J, hence
∆k

J = (∆k
I )g = (∆k

I )TI (g) = ∆k
J′ . This implies J ′ = J whence (iii).

Since clearly (iii) implies (i), it remains to show that (i) implies
(iii). Assume thus (i) and let u = (∆k

I )g ∈ GJ . By multiplying g−1

by some central power of ∆ we may find h ∈ M such that
uh = ∆k

I . Then by the Lemma (head in MI ) we have uHJ(h) ∈ MJ .

We thus have (∆k
I )TJ(h)−1 ∈ MJ . Multiplying by a central power of

∆ we get m ∈ M such that (∆k
I )m ∈ MJ . By the above Lemma we

have ITI (m) ⊂ J. But h−1, thus TJ(h)−1, thus m, thus TI (m)
conjugates GI onto GJ hence ITI (m) = J.

Corollary

It is equivalent that g ∈ G conjugates GI onto GJ , or that it
conjugates some central power ∆k

I to another ∆k
J .

Proof.

We remark that in the proof of either (i) ⇒ (iii) or (ii) ⇒ (iii) of
Proposition (conjugate parabolics) the element obtained from g is
in the coset GIgGJ up to a central power of ∆, whence the
result.

Definition

If P = G g
I is a parabolic subgroup, we denote by zP the element

(∆k
I )g where ∆k

I is the smallest central power.

zP depends only on P and not on I and g by the above Corollary.



Proposition

Let P = Gb
I be a parabolic subgroup of G, where I ⊂ S is

saturated and b ∈ M. Define b′ by HI (b)cI (TI (b))b′ = b and J by
J = I cI (TI (b)). Then b′−1∆k

Jb
′ is the reduced fraction of zP , where

∆k
J is the smallest central power of ∆J in MJ .

Proof.

We first remark that by definition we have (∆k
I )b = zP . We may

clearly replace b in this equality by TI (b). Let c = cI (TI (b)); we
have (∆k

I )c = ∆k
J . We thus get zP = b′−1∆k

Jb
′. We claim this is a

reduced fraction. Indeed by construction cJ(b′) = 1 thus by
Proposition (ribbon prefix)(ii) the left descent set of ∆Jb

′ is J,
thus the same is true for ∆k

Jb
′. Since b′ is J-reduced, the fraction

is reduced.

Note that b′ above is minimal such that b′P is standard, that is
any u ∈ M such that uP is standard is a left multiple of b′, and GJ

is a “canonical” standard parabolic subgroup conjugate to P.

Support

We call support of b ∈ M the smallest saturated I such that
b ∈ MI .
For now on unless stated otherwise we assume M is a spherical
Artin monoid, because this is the setting where we can prove the
next proposition (where we replace the assumption ∆I divides
some power of b with supp(b) = I ). If we assume this proposition
the rest works.

Proposition (Positive conjugate implies ribbon)

Let g , b ∈ M, I = supp(b) such that g is I -reduced and such that

bg ∈ M. Then I
g−→ is in the ribbon category, that is

I g = supp(bg ) ⊂ S.

Proof.
We first show that we can reduce to the case where g is simple, by
arguing by induction on the number of terms of the Garside normal
form of g .



Proof continued
The assumption that bg ∈ M can be written g 4 bg from which it
follows that H(g) 4 H(bg) = H(bH(g)), in particular
H(g) 4 bH(g), that is bH(g) ∈ M; and for g to be
supp(b)-reduced, we certainly need that H(g) is supp(b)-reduced.
If we know the theorem in the case where g is simple, it follows
that J := supp(b)H(g) ⊂ S ; and thus bH(g) has support J. We also
have that T (g) is J-reduced by Lemma (I -tail preserved by
ribbons). Since (bH(g))T (g) ∈ M, we conclude by induction on the
number of terms of the normal form of g that JT (g) ⊂ S , whence
the result since JT (g) = supp(b)g .
We now show the theorem when g is simple. We write the
condition that bg ∈ M as bg = gu with u ∈ M.
We proceed by an induction on the length of b. For s ∈ S dividing
b, we write b = sb′. We have s 4 bg = gu.

Proof continued

Lemma

Let g ∈ M be simple and let s ∈ S, u ∈ M be such that s 64 g but
s 4 gu. Then we have u = u′tu′′ where t ∈ S such that
sgu′ = gu′t is simple.

Proof.

First note that s 4 H(gu). Let gu1 = H(gu). Since in the Coxeter
group s is in the left descent set of gu1 but not in that of g we
have by the exchange lemma gu1 = gu′tu2 where t ∈ S and
sgu′ = gu′t. Lifting back to M we get the lemma with
u′′ = u2T (gu).



Proof continued.

Since s does not divide g , the lemma gives u = u′tu′′ with t ∈ S
and sgu′ = gu′t. From bg = sb′g = gu = gu′tu′′ = sgu′u′′ we
deduce b′g = gu′u′′. Thus b′, g satisfy the assumptions of the
theorem, thus by induction on the length of b we have
supp(b′)g ⊂ S . We still have to prove that sg ∈ S . This is already
proven unless s 6∈ supp(b′), which we assume now.
Since supp(b′)g ⊂ S , we can write b′g = gb′′ for some b′′ ∈ M.
Since sgb′′ = gu = gu′tu′′ = sgu′u′′, we have b′′ = u′u′′. Now
g supp(b′′)g−1 ⊂ supp(b′), hence v := gu′g−1 ∈ Msupp(b′). From
sgu′ = gu′t we get svg = vgt which we write as (v−1sv)g = gt.
Since g is supp(b)-reduced l(v−1svg) = l(v−1sv) + l(g), whence
l(v−1sv) = 1. But supp(v) ⊂ supp(b′) so that s 6⊂ (supp v), hence
l(v−1sv) = 1 implies v−1sv = s, thus sg = t.

Proposition (Support remains full)

Let b ∈ M such that supp(b) = S and let g ∈ G such that
u := bg ∈ M. Then supp(u) = S.

Proof.

We first observe that we can assume g−1 ∈ M, since multiplying g
by some central power of ∆S does not change the assumptions.
Assume that supp(u) = J ( S . We will derive a contradiction.
Write g−1 = ag ′ where g ′ ∈ M is J-reduced and a = HJ(g−1).
From Lemma (head in MI ) we get that ua ∈ MJ and (ua)g

′
= b.

Since g ′ is J-reduced, we may apply Proposition (positive
conjugate implies ribbon) and we deduce that supp(b) ⊂ Jg ⊂ S ,
a contradiction.



Proposition

Let J,K ⊂ S. Then there is equivalence between

(i) There exists b ∈ MJ of support J and g ∈ G such that
bg ∈ MK .

(ii) There exists g ∈ M such that Jg ⊂ K.

Proof.

It is clear that (ii) implies (i), so we have to prove that (i) implies
(ii). We may assume that g ∈ M by multiplying it by a suitable
central power of ∆. We may use lemma (head in MI ) which tells
us that replacing g by g ′ and b by bHJ(g) where g = HJ(g)g ′ we
may assume that b ∈ MJ and that g is J-reduced; note that we
still have supp(b) = J by Proposition (support remains full). We
then apply Proposition (positive conjugate implies ribbon) to
deduce that Jg ⊂ S ∩MK = K .

Proposition

Let b ∈ M; then Gsupp(b) is the unique minimal parabolic subgroup
of G which contains b.

Proof.

Suppose b ∈ G g
J , another parabolic, which is minimal containing b;

thus there exists u ∈ GJ such that ug = b. Multiplying by a
central power of ∆, we may assume g ∈ M. Applying Lemma
(head in MI ) we may assume that u ∈ MJ and that g is J-reduced.
We may also assume that supp(u) = J otherwise G g

J is not
minimal (since G g

supp(u) 3 b already). By Proposition (positive

conjugate implies ribbon) we have that Jg = K ⊂ S for some K ,
and K = supp(ug ) = supp(b). Thus G g

J = Gsupp(b).

It follows that if for b, g ∈ G we have bg ∈ M, then the unique
minimal parabolic subgroup containing b is gGsupp(bg ).



Reversing

For the next frames M is an arbitrary Garside monoid with finitely
many simples.

Definition

If p−1q is the reduced fraction for b ∈ G we define

I the support of b by supp(b) = supp(p) ∪ supp(q),

I the denominator of b by den(b) = p,

I the reverse of b by rev(b) = den(b)b = qp−1.

Note that the support agrees with the previous definition when
b ∈ M.
Note also that, the Garside element is central and p and q are
simple and both non trivial, then rev is cycling.

We denote by l∆(b) the number of factors in the Garside normal
form of b ∈ M.

Proposition (reversing circuits)

(i) If b = p−1q and rev(b) = p′−1q′ are reduced fractions, we
have l∆(p′) ≤ l∆(p) and l∆(q′) ≤ l∆(q).

(ii) rev is ultimately periodic, that is, for b ∈ G, there exists
j > i ≥ 0 such that revi (b) = revj(b).

We write RC(b) for the “reversing circuit” of b ∈ G , that is the
set of elements which can be reached from b by iterating rev and
belong to a period of rev, and we set RC(G ) = ∪b∈G RC(b).



For b ∈ RC(G ) and i ≥ 1 let
den(i)(b) = den(revi−1(b)) . . . den(rev(b))den(b), so that
den(i)(b)b = revi (b).
If g ∈ M is such that bg ∈ RC(G ); for i ≥ 1 define
rev(i)(g) = den(i)(b)g(den(i)(bg ))−1.

Proposition (reversing circuits...)

(iii) rev(i) is ultimately periodic, more precisely, there exists
j > i > 0 such that b = revi (b) = revj(b),
bg = revi (bg ) = revj(bg ), rev(i)(g) = rev(j)(g).

(iv) We have l∆(den(i)(b)) ≤ il∆(den(b)).

(v) If b has a conjugate in M then RC(b) ⊂ M. If i is minimal
such that revi (b) ∈ M, then i ≤ l(∆) and den(i)(b) is the
shortest element conjugating b into M.

Proof.
Since the left-gcd of p′ and q′ is trivial, l∆(p′) is the least m such
that ∆mp′−1q′ ∈ M. But qp−1 = p′−1q′, thus l∆(p′) ≤ l∆(p).
Similarly, from pq−1 = q′−1p′ we get l∆(q′) ≤ l∆(q), whence (i).
Moreover, since the number of divisors of a fixed power of ∆ is
finite we get the ultimate periodicity of rev, whence (ii).
Let us prove (iii). We first prove that rev(1)(g) is in M. We have
rev(1)(g) = den(b)g den(bg )−1 and we have to prove that den(bg )
right-divides den(b)g . Let b = p−1q and bg = u−1v be reduced
fractions. We have thus (pg)−1(qg) = u−1v so that pg < u (and
qg < v). Since den(bg ) = u and den(b) = p, we have
rev(1)(g) ∈ M.
If g , h ∈ M are such that bg and bgh are in RC(G ), then we have
rev(1)(g) rev(1)(h) = rev(1)(gh), hence rev(1) preserves left
divisibility. Since rev(1)(∆) = ∆ we deduce that if g 4 ∆m for
some m, then rev(i)(g) 4 ∆m for all i .



Proof continued
Since b and bg are in RC(G ), there exists i0 such that revi0(b) = b
and revi0(bg ) = bg . Since the number of divisors in M of ∆m is
finite, there exist i < j , two multiples of i0, such that
rev(i)(g) = rev(j)(g), whence (iii).
(iv) comes from the fact that l∆(den(revj(b))) ≤ l∆(den(b)) for
any j ≥ 0 by (i).
We prove (v). First note that if p−1q is the reduced fraction for b
and g ∈ M is such that gb = c ∈ M, then g < p since
p−1q = g−1(cg) and p−1q is a reduced fraction. Take g such that
l(g) is minimal such that gbg−1 ∈ M. Let us write g = g ′p.
Now we have gp−1qg−1 = g ′qp−1g ′−1 = g ′ rev(b)g ′−1 and g ′ has
minimal length such that g ′ rev(b)g ′−1 ∈ M, since if l(g ′′) < l(g ′)
and g ′′ rev(b)g ′′−1 = g ′′qp−1g ′′−1 ∈ M then
l(g ′′p) < l(g ′p) = l(g) and g ′′qp−1g ′′−1 = g ′′pb(g ′′p)−1 ∈ M, a
contradiction with the minimality of g .

Proof continued.

We can iterate the process, replacing b with rev(b) and g with g ′.
Let g (1) := g ′ and g (i) be the element obtained at the i-th step.
Since g (i) ≺ g (i−1) we will get eventually g (i) = 1 (for the first i
such that revi (b) ∈ M) which shows that RC (b) ⊂ M and also
that g = den(i)(b).
We now claim that H(g ′) ≺ H(g). Assume by contradiction
H(g ′) = H(g). Write g = H(g)T (g). From gp−1q = cg with
c ∈ M we get g ′q = cg , hence H(g) = H(g ′) 4 cg , whence
H(g) 4 cH(g). Writing cH(g) = H(g)c1 and cancelling H(g), we
obtain T (g)p−1qT (g)−1 = c1 ∈ M, which contradicts the
minimality of g since l(T (g)) < l(g).
We have thus proved that i ≤ l(H(g)).

Note that in (iii) we can assume j − i > 1 by adding to j the
length of a period if necessary.



Now M is again a spherical Artin monoid.

Theorem

Let b ∈ RC(G ), g ∈ M such that bg ∈ RC(G ). Let I = supp(b)
and J = supp(bg ). Then ITI (g) = J.

Proof.

We first note that if b ∈ M, then bg ∈ M also and we get the
result by Proposition (positive conjugate implies ribbon).
If b−1 ∈ M, since by definition we have den(b) = b−1, we get
rev(b) = rev(b−1)−1. Since b and b−1 have same support, the
property for b−1 gives the result for b.

Proof continued.

In general, by Proposition (reversing circuits)(iii), it is possible to
choose j > i > 0 such that revi (b) = revj(b) = b,
revi (bg ) = revj(bg ) = bg and

(den(i)(b))−1g den(i)(bg ) = (den(j)(b))−1g den(j)(bg ). (17)

Since revi (b) = b, we have den(j)(b) = den(j−i)(b)den(i)(b) and
similarly den(j)(bg ) = den(j−i)(bg )den(i)(bg ). Thus the equation
gives den(j−i)(b)g = den(j−i)(bg ). Let uk(b) = den(k)(b)b. We
still have uj−i (b)g = uj−i (b

g ). Now note that if p−1q is the
reduced fraction for b and p′−1q′ that for rev(b) we have
u2(b) = den(rev(b))den(b)b = p′pb = p′q = left-lcm(p, q), the
last equality since p′q = q′p; thus for k ≥ 2 the element uk(b) is
in M and has same support as b and similarly uk(bg ) ∈ M with
same support as bg . Up to increasing j we may assume
k = j − i ≥ 2 and apply Proposition (positive conjugate implies tail
ribbon) to uk(b)g = uk(bg ) and we get the result.



Proposition (Minimal parabolic)

Let b ∈ RC(G ). Then Gsupp(b) is the unique minimal parabolic
subgroup of G which contains b.

Proof.

Suppose b ∈ G g
J , another parabolic, which is minimal containing b;

let u = gb ∈ GJ . By multiplying on the left g by some element of
GJ we can replace u by some element in RC(G ) ∩ GJ .
We may also assume that g ∈ M up to multiplying g by some even
power of ∆. We may then apply proposition (positive conjugate
implies tail ribbon) to conclude that supp(u)Tsupp(u)(g) = supp(b).
We also have supp(u) = J otherwise G g

J is not minimal (since

G g
supp(u) 3 b already), thus G g

J = G
TJ(g)
J = Gsupp(b).

Corollary

Any element of G is contained in a unique minimal parabolic
subgroup Pmin(b).

Proof.

Let b ∈ G and bg ∈ RC(G ); then Pmin(b) := gGsupp(bg ) is the
unique minimal parabolic subgroup containing b.



Definition

For b ∈ G we define ϕ(b) = l(∆I ) if G g
I = Pmin(b).

Note that ϕ(b) is a well-defined invariant of the conjugacy class of
b by Proposition (conjugate parabolics). Thanks to Proposition
(minimal parabolic), another way of defining ϕ(b) is as l(∆supp(b′))
if b′ is any element of RC(b).

Proposition

Let β ∈ G and I ⊂ S be such that for any m, we have
ϕ(β∆m

I ) ≤ l(∆I ). Then β ∈ GI .

Proof.

We first show that for m large enough, we have RC(β∆m
I ) ⊂ M.

Let l̃ be the topological length on G (for a fraction p−1q, it is
equal to l(q)− l(p)), which is invariant by conjugacy. If βm is any
element of RC(β∆m

I ), we thus have l̃(βm) = l̃(β) + mn, where
n = l(∆I ) = l̃(∆I ).

Proof continued
Now let us define l∆(b) for an arbitrary b ∈ G as l∆(p) + l∆(q)
where p−1q is a reduced fraction for b. Then we have
l∆(β∆m

I ) ≤ l∆(β) + m. The same majoration holds for l∆(βm) by
Proposition (reversing circuits)(i).
Now if βm /∈ M and has reduced fraction say p−1

m qm, no term of
the normal form of pm or qm is equal to ∆supp(βm) so any term x of
these normal forms satisfies l(x) < l(∆supp(βm)) ≤ n, the last
inequality by the definition of n and Proposition (Minimal
parabolic). It follows that
l(pm) + l(qm) ≤ (n − 1)l∆(βm) ≤ (n − 1)(l∆(β) + m). Now we
have l̃(β) + mn = l̃(βm) ≤ l(pm) + l(qm) ≤ (l∆(β) + m)(n − 1), a
contradiction when m is large enough, which refutes the
assumption βm /∈ M.
For m large enough, since β∆m

I has a conjugate in M, by
Proposition (reversing circuits)(v) we have revl(∆)(β∆m

I ) ∈ M. Let

us denote by cm the element den(l(∆))(β∆m
I ) of Proposition

(reversing circuits)(iv); this element conjugates β∆m
I to

revl(∆)(β∆m
I ).



Proof continued
If a−1b is the reduced fraction for β, since den(β∆m

I ) 4 a we get
by Proposition (reversing circuits)(iv) that l∆(cm) is bounded by
l(∆)l∆(a) which is independent of m. Thus we have
(β∆m

I )cm ∈ M where cm ∈ M has l∆ bounded by some number h
independent of m.
In the following lemma we write x1, . . . , xr for the r terms of the
normal form of the element x1x2 · · · xr .

Lemma

Let c1, . . . , cr ,∆J , . . . ,∆J︸ ︷︷ ︸
l terms

, d1, . . . , dt be the normal form of an

element of x ∈ M, with J ⊂ S, and let c ∈ M. Then the normal
form of cx has at least l − l∆(c) terms equal to ∆J .

Proof.

By induction on l∆(c), it suffices to prove that when c is simple,
the normal form of cx has a similar shape to the form of x given in
the statement, with l − 1 terms equal to ∆J in the middle. The
normal form of cc1 . . . cr∆J is computed recursively from left to
right by replacing c , c1 by H(cc1),T (cc1), then applying this
process to T (cc1) and c2, etc. . ., eventually applying the process
to y and ∆J giving H(y∆J),T (y∆J); thus the normal form is of
the form c ′1, . . . , c

′
r ′ , j where the right descent set of c ′r ′ contains J

and j ∈ MJ . It follows that cx = c ′1 . . . c
′
r ′∆

l−2
J j ′∆Jd1 . . . dt where

c ′1, . . . , c
′
r ′ ,∆J , . . . ,∆J︸ ︷︷ ︸

l − 2 terms

is a normal form and j ′ is the conjugate of j

by ∆l−2
J . We now claim that the normal form of j ′∆Jd1 . . . dt is of

the form ∆J , d
′
1, . . . , d

′
t′ . Indeed

H(j ′∆Jd1 . . . dt) = H(j ′∆J) = ∆J . Thus the normal form of cx is
c ′1, . . . , c

′
r ′ ∆J , . . . ,∆J︸ ︷︷ ︸

l − 1 terms

, d ′1, . . . , d
′
t′ which proves that the induction

works.



Proof continued.

y Proposition (Ribbon prefix) if we write cm = HI (cm)emdm where
em = cI (TI (cm)) then Jm := I em ⊂ S and the left descent set of
∆Jmdm is Jm. It follows that the normal form of ∆m

Jm
dm has its

m − 1 first terms equal to ∆Jm . If a−1b is the reduced fraction for
β, we apply the Lemma to b∆m

I cm = bHI (cm)∆m
I em∆m

Jm
dm with

J = Jm, c = bHI (cm)∆m
I em and x = ∆m

Jm
dm and, using that l∆(c)

is bounded by h + l∆(b), conclude that in the normal form of
b∆m

I cm there are at least m − 1− h − l∆(b) terms equal to ∆J .
Since c−1

m a−1b∆m
I cm ∈ M, the element acm must divide the first

l∆(acm) terms of the normal form of b∆m
I cm. Thus the last

l∆(b∆m
I cm)− l∆(acm) terms of the normal form of b∆m

I cm are a
right divisor of (β∆m

I )cm ∈ M, and since l∆(acm) is bounded by
h + l∆(a), for m large enough these terms contain at least one
copy of ∆Jm . Thus the support of (β∆m

I )cm contains Jm. Since
l(∆Jm) = l(∆I ) = n, the support cannot be greater than Jm, by
the assumption on ϕ(β∆m

I ), so is equal to Jm. It follows in
particular that dm ∈ GJm , so that e−1

m β∆m
I em ∈ GJm , thus

β∆m
I ∈ GemJm = GI , thus finally β ∈ GI .

Theorem

The intersection of two parabolic subgroups of G is a parabolic
subgroup.

Proof.

Let P and Q be two parabolic subgroups, and let H ∈ P ∩Q be an
element with ϕ(H) maximal amongst elements of P ∩Q. We claim
that P ∩ Q = Pmin(H). Up to conjugating H,P,Q we may (and
we will) assume that Pmin(H) is the standard parabolic GI . Let
β ∈ P ∩Q; since β∆m

I ∈ P ∩Q we have ϕ(β∆m
I ) ≤ ϕ(H) = l(∆I )

thus by the above Proposition we have β ∈ GI .


