Trying to understand the intersection of parabolic
subgroups after Cumplido, Gebhardt, Gonzalez
and Wiest

Jean Michel (joint work with Francois Digne)
University Paris Diderot

Caen, 10th September 2021

Tracts in Mathematics 22

Patrick Dehornoy
h Francois Digne
Eddy Godelle
Daan Krammer
Jean Michel

Foundations of

Garside Theory




The setting
We look for a setting which holds for a spherical Artin monoid, and
for the dual monoid of a finite complex reflection group.
Let M be a Garside monoid with Garside element A, and with an
additive length function / : M — N. We assume M is generated by
the set S of its elements of length 1, which form a finite set (the
atoms).
We call standard parabolic a submonoid stable by left and right
divisors and left and right lcms.
We call | C S saturated if it is the set of atoms of a standard
parabolic submonoid (equivalently if M, := (/) is standard
parabolic).
In general for | C S we denote by I the smallest saturated subset
of atoms which contains /.

We assume that for any | C S the right and left lcms of | are
equal and equal to the lcm of I.

We denote Aj = A7 that lem. It is a Garside element for M;.

I-head and tail

For b € M we write b = H(b) T(b) where H(b) is the first term of
the Garside normal form of b and T(b) is the rest.

Proposition
For | saturated, any b € M has a unique maximal left-divisor
Hi(b) in M.

Proof.
The right lcm of two divisors of b in M, is in M;. (]

We define T;(b) by b = H;(b)T;(b). We say that b is /-reduced if
H(b) = 1.



The ribbon category

We call ribbon category the category with objects the saturated
subsets of S and maps | £ when g € M is I-reduced and /€ C S.
The target of this map is /8. We will see that /& is automatically
saturated.

The ribbon category makes sense in a more general context, for
example in any Artin group with the only condition that the
monoids M, be spherical.

Definition
For | saturated and s € S — /, we define vy € M and J C /U {s}

by the equalities Ajvs; = vs &) = A5y (= Apgpy)-

Note that since Am does an automorphism of / U {s}, it
conjugates a saturated part to another one.

For a,b € M we write a < b if a left-divides b.
Lemma (Atoms of the ribbon category)
Assume that | £ is in the ribbon category and thats € S

left-divides g. Then vs; < g.

Proof.
We have Ajg = gAf. Thus s < Ag, thus Ajupsy < Ag, thus
vy =AM A e S 8 0

The fact that a map in the ribbon category is a product of such
atoms implies that its target is saturated.



Lemma (/-head and /-tail preserved by ribbons)

Let | &5 be in the ribbon category and let h € M. Then
Ti(gh) = gTis(h) and H(gh)¥ = His(h).

Proof.

Let s € | and set s’ := s&. Both formulae clearly follow if we show
that it is equivalent that s < gh or that s’ < h.

Now from sg = gs’ it follows that the right lcm of s and g divides
sg, thus it must be equal to sg (because its length is at least

I(g) +1). Thus s < gh is equivalent to sg < gh or equivalently
gs' < gh which is finally equivalent to s’ < h. O

Proposition

If I 5 is in the ribbon category, so are all the terms of its Garside
normal form.

Proof.
It is sufficient to prove that / M and /H(e) M} are in the

ribbon category.

For the first fact, since Hj(g) = 1 implies H;(H(g)) =1 it is
sufficient to prove that /M(8) ¢ S. Let s /. Then s8 € S'is
equivalent to g < sg which gives

H(g) < H(sg) = H(sH(g)) < sH(g) which implies s"(&) € S.

For the second fact, since (IH(g))T(g) =18 C S, it is sufficient to
show that T(g) is /"(&)-reduced. By Lemma (/-head preserved)
with H(g). T(g) for g, h, we get that

Hynio (T(2)) = Hi(H(&) T(g))"® = 1. O



Proposition

If1 £ and | £ are in the ribbon category, then so is
left-ged(g.g),
| ————=

Proof.

It is clear that H(left-gcd(g, g’)) = 1 so we have to show that
[lefecd(g:8’) = S. The proof is by induction on max(/(g), /(g’)). If
left-ged(g, g) # 1, then there is some a € S such that a < g and
a < g'. By Lemma(atoms of the ribbon category) we have

v(a,/) < g and v(a, /) < g’. We conclude by induction by
replacing g by v(a,/)"lg and g’ by v(a,/)"1g’. O

Proposition

If1 £ and | £ are in the ribbon category, then so is
| right-lem(g.g”)

Proof.

We first show that /right-lem(gg’) — G Indeed, if g < sg, and

g’ < sg’ then right-lem(g, g’) < sright-lem(g, g’). It remains to
show that k = right-lcm(g, g’) is /-reduced. Note that Lemma
(/-tail preserved) implies that if / £, is in the ribbon category and
g < k then g < Ty(k). It follows that g, g’ left-divide T;(k), thus
k = right-lem(g, g') divides T;(k) which proves that k is
I-reduced. O



Proposition (Ribbon prefix)

Forl C S, let g € M be |-reduced. Then there is a unique
maximal prefix h of g in the ribbon category (with same source as
g, that is such that I" C S). If we denote c/(g) this prefix,
alg)leis 1<(8)-reduced and there is equivalence between:

(i) ale)=1.
(ii) The left descent set of g is I.

Proof.

The existence of ¢;(g) is a consequence of the fact that the ribbon
category is stable by right-lcms. The fact that ¢/(g)1g is
19(8)_reduced is an immediate consequence of Lemma
(preservation of head).

We finally prove the equivalence of (i) and (i) by observing that
c/(g) # 1 is equivalent to the existence of t ¢ I such that v¢; < g,
which is in turn equivalent to Ay < Ajg which is equivalent to
t being in the left descent set of A,g. O

Proposition (Positive conjugacy)

Let g € M, b € M, be such that g is |-reduced and such that
b& € M. Assume further that Ay < b’ for some integer i. Then
18 cCS.

Proof.

We first note that the assumption b8 € M, that we write bg = gu
for some u € M, implies b¥g = gu¥ for any k > 0; thus replacing
b by some power we may assume A; < b, say b= Ajv.

We have thus the equality Ajvg = gu. If s€ S, s < g it follows
that Ay left-divides both sides thus vs; < vg.

We now show by induction on the length of v that vs; < g. We
may write v = tv/ with t in /. Since vg is left-divisible by vs; and
by t, it is divisible by their right-lcm, which is equal to tvs;. Thus
Vs < V'g, and we conclude by induction.

We now conclude by induction on the length of g, since replacing
g by v;,lg and / by J = /" all the assumptions remain. O



We now denote by G the group of fractions of the Garside monoid
M. We call standard parabolic subgroups the subgroups G;
generated by a standard parabolic monoid M, and parabolic
subgroups the conjugates of the standard parabolic subgroups.

Definition

We say that p~1q is a left reduced fraction for b € G if b= p~iq
with p, g € M and the left-gecd of p and q is trivial.

Symmetrically there are right reduced fractions pg~?.

fraction” will mean left reduced fraction.

The left reduced fraction for an element is unique; more precisely if
plqis reduced and p~1q = p'~1q’ there exists d such that

p' =dpand ¢ = dq.

If an element of G has p~1q as its reduced fraction in G, then
p,q € M since there is a reduced fraction a~ b in G; and a = p
and b = q.

“reduced

Lemma (Head in M)
Let b€ Gj,g € M be such that b8 € M. Then b"1(&) ¢ M.

Proof.

Write b8 = b/, and write g = H(g) Ti(g). Let b"1(&) = pg1
where the right-hand side is a right reduced fraction in G,

(p,q € M;). From the equality of the two fractions

Ti(g)b' Ti(g)™t = pg~* we deduce g < T;(g) which implies g = 1
since Ty(g) is I-reduced. O



We can now weaken the assumptions in Proposition (positive
conjugacy)
Proposition (positive conjugate implies tail ribbon)

Let b€ My, g € M such that b8 € M. Then b"(®) € M. Assume
that for some i > 0 we have A’; < b. Then IT(&) ¢ S.

Proof.

By Lemma (head in M;) b"(€) is still in M;. Since T(g) is
I-reduced we can now apply Proposition (positive conjugacy) with
b replaced by b"(8) and g replaced by Tj(g) and we get the

result. O

Lemma (conjugating A conjugates /)

Let A¥ be central in M;. If (AK)e € M, for g € M, then
17i(&) .

Proof.

We have (AF)F1(&) = Ak, thus (AF)Ti(8) € M,. By the
Proposition on positive conjugates we get ITi(8) ¢ S, hence
1T ¢ J. O

Proposition (conjugate parabolics)
For two saturated subsets |, J C S we have equivalence between:
(i) Thereis g € G such that Gf = G,.
(ii) There exist an integer k > 1 and g € G such that
(8)s = A,
(iii) There is g € G such that I8 = J



Proof.

Clearly that (iii) implies (ii) for any k. Let us show that (ii) implies
(iii). We can raise to some power the equality (Af)€ = AX to
ensure Af is central in M;. By multiplying g by some central
power of A we may assume g € M. By Lemma (conjugating A,
conjugates /) we have /71(8) = J' C J, hence

Ak = (AK)g = (AF)TI(8) = AK,. This implies J/ = J whence (iii).
Since clearly (iii) implies (i), it remains to show that (i) implies
(iii). Assume thus (i) and let u = (A¥)& € G;. By multiplying g~
by some central power of A we may find h € M such that

ul = AK. Then by the Lemma (head in M;) we have u"/(") € M,.
We thus have (Af‘)TJ(”) te M, Multiplying by a central power of
A we get m € M such that (A¥)™ € M. By the above Lemma we
have /7™ < J. But h%, thus T (h)~%, thus m, thus T;(m)
conjugates G; onto G, hence [Tilm) = . O

1

Corollary

It is equivalent that g € G conjugates Gy onto G, or that it
conjugates some central power Af‘ to another A’J‘.

Proof.

We remark that in the proof of either (i) = (iii) or (ii) = (iii) of
Proposition (conjugate parabolics) the element obtained from g is
in the coset G;gG; up to a central power of A, whence the

result. O

Definition
If P= G,g is a parabolic subgroup, we denote by zp the element
(AK)& where Ak is the smallest central power.

zp depends only on P and not on / and g by the above Corollary.



Proposition

Let P = G} be a parabolic subgroup of G, where | C S is
saturated and b € M. Define b’ by Hi(b)c/(T;(b))b' = b and J by
J = 19(Ti(B) | Then b”lA’jb’ is the reduced fraction of zp, where
Aﬁ is the smallest central power of A in M.

Proof.

We first remark that by definition we have (AK)? = zp. We may
clearly replace b in this equality by T;(b). Let ¢ = ¢;(T;(b)); we
have (AK) = AK. We thus get zp = b'""1Akb. We claim this is a
reduced fraction. Indeed by construction ¢,;(b’) = 1 thus by
Proposition (ribbon prefix)(ii) the left descent set of A b’ is J,
thus the same is true for A'jb’. Since b’ is J-reduced, the fraction
is reduced. O

Note that b above is minimal such that ? P is standard, that is
any u € M such that UP is standard is a left multiple of b/, and G,
is a “canonical” standard parabolic subgroup conjugate to P.

Support

We call support of b € M the smallest saturated / such that

be M.

For now on unless stated otherwise we assume M is a spherical
Artin monoid, because this is the setting where we can prove the
next proposition (where we replace the assumption A, divides
some power of b with supp(b) = /). If we assume this proposition
the rest works.

Proposition (Positive conjugate implies ribbon)
Let g,b € M, | = supp(b) such that g is I-reduced and such that

b8 € M. Then I % is in the ribbon category, that is
18 = supp(b®) C S.

Proof.

We first show that we can reduce to the case where g is simple, by
arguing by induction on the number of terms of the Garside normal
form of g.



Proof continued

The assumption that b8 € M can be written g < bg from which it
follows that H(g) < H(bg) = H(bH(g)), in particular

H(g) < bH(g), that is b™(8) € M; and for g to be
supp(b)-reduced, we certainly need that H(g) is supp(b)-reduced.
If we know the theorem in the case where g is simple, it follows
that J := supp(b)"(® c S; and thus b"(&) has support J. We also
have that T(g) is J-reduced by Lemma (/-tail preserved by
ribbons). Since (b"(€))7(8) ¢ M, we conclude by induction on the
number of terms of the normal form of g that J7T(@) ¢ S, whence
the result since J7(8) = supp(b)&.

We now show the theorem when g is simple. We write the
condition that b8 € M as bg = gu with u € M.

We proceed by an induction on the length of b. For s € S dividing
b, we write b = sb’. We have s < bg = gu.

Proof continued

Lemma

Let g € M be simple and let s € S, u € M be such that s £ g but
s < gu. Then we have u = u'tu" where t € S such that

sgu’ = gu't is simple.

Proof.

First note that s < H(gu). Let gu; = H(gu). Since in the Coxeter
group s is in the left descent set of gu; but not in that of g we
have by the exchange lemma gu; = gu'tu, where t € S and

sgu’ = gu't. Lifting back to M we get the lemma with

u" = uy T(gu). O



Proof continued.

Since s does not divide g, the lemma gives u = v'tu” with t € S
and sgu’ = gu't. From bg = sb'g = gu = gu'tu” = sgu’u” we
deduce b'g = gu'u”. Thus b, g satisfy the assumptions of the
theorem, thus by induction on the length of b we have

supp(b')8 C S. We still have to prove that s& € S. This is already
proven unless s & supp(b’), which we assume now.

Since supp(b')8 C S, we can write b'g = gb” for some b” € M.
Since sgb” = gu = gu'tu" = sgu’u”, we have b = u'u". Now
gsupp(b”)g C supp(b'), hence v := gu'g ™! € Maypp(ry- From
sgu' = gu't we get svg = vgt which we write as (v sv)g = gt.
Since g is supp(b)-reduced /(v—svg) = /(v1sv) + I(g), whence
I(v~1sv) = 1. But supp(v) C supp(b’) so that s ¢ (supp v), hence
I(vtsv) = 1 implies v lsv = s, thus s8 = t. O

Proposition (Support remains full)

Let b € M such that supp(b) = S and let g € G such that
u:=b& € M. Then supp(u) = S.

Proof.

We first observe that we can assume g~! € M, since multiplying g
by some central power of Ag does not change the assumptions.
Assume that supp(u) = J C 5. We will derive a contradiction.
Write g = ag’ where g’ € M is J-reduced and a = H,(g1).
From Lemma (head in M;) we get that u® € M, and (u?)8’ = b.
Since g’ is J-reduced, we may apply Proposition (positive
conjugate implies ribbon) and we deduce that supp(b) C J& C S,
a contradiction. O



Proposition
Let J,K C S. Then there is equivalence between

(i) There exists b € M, of support J and g € G such that
b& € M.
(ii) There exists g € M such that J& C K.

Proof.
It is clear that (ii) implies (i), so we have to prove that (i) implies
(ii). We may assume that g € M by multiplying it by a suitable
central power of A. We may use lemma (head in M;) which tells
us that replacing g by g’ and b by b"/(&) where g = H,(g)g’ we
may assume that b € M, and that g is J-reduced; note that we
still have supp(b) = J by Proposition (support remains full). We
then apply Proposition (positive conjugate implies ribbon) to
deduce that J8 C SN Mk = K.

Proposition

Let b € M; then Gypp(p) is the unique minimal parabolic subgroup
of G which contains b.

Proof.

Suppose b € GJg, another parabolic, which is minimal containing b;
thus there exists u € G, such that u& = b. Multiplying by a
central power of A, we may assume g € M. Applying Lemma
(head in M;) we may assume that u € M, and that g is J-reduced.
We may also assume that supp(u) = J otherwise G is not
minimal (since Gfupp(u) > b already). By Proposition (positive
conjugate implies ribbon) we have that J& = K C S for some K,
and K = supp(u€) = supp(b). Thus G§ = Gyupp(b)- O

It follows that if for b, g € G we have b8 € M, then the unique
minimal parabolic subgroup containing b is & Gyypp(ps)-



Reversing

For the next frames M is an arbitrary Garside monoid with finitely
many simples.
Definition
If p~1q is the reduced fraction for b € G we define
» the support of b by supp(b) = supp(p) Usupp(q),
» the denominator of b by den(b) = p,
> the reverse of b by rev(b) = den(b)p = gp=1.

Note that the support agrees with the previous definition when
be M.

Note also that, the Garside element is central and p and q are
simple and both non trivial, then rev is cycling.

We denote by /a(b) the number of factors in the Garside normal
form of b e M.

Proposition (reversing circuits)

(i) Ifb=plq andrev(b) = p'~1q are reduced fractions, we
have In(p') < Ia(p) and In(q') < Ia(q).

(ii) rev is ultimately periodic, that is, for b € G, there exists
J > i >0 such that rev'(b) = rev/(b).

We write RC(b) for the “reversing circuit” of b € G, that is the
set of elements which can be reached from b by iterating rev and
belong to a period of rev, and we set RC(G) = Upeg RC(b).



For b € RC(G) and i > 1 let

den()(b) = den(revi=1(b)). . .den(rev(b)) den(b), so that
den(b)py — rev/(b).

If g € M is such that b8 € RC(G); for i > 1 define
revi)(g) = den()(b)g(den') (€))L,

Proposition (reversing circuits...)

(iii) rev(?) is ultimately periodic, more precisely, there exists
j > i >0 such that b = revi(b) = rev/(b),
bE = revi(b8) = revi(bg), rev)(g) = revi)(g).

(iv) We have In(den) (b)) < ila(den(b)).

(v) If b has a conjugate in M then RC(b) C M. If i is minimal
such that revi(b) € M, then i < I(A) and den)(b) is the
shortest element conjugating b into M.

Proof.

Since the left-ged of p’ and ¢’ is trivial, Ia(p’) is the least m such
that A™p'~1q’ € M. But gp~! = p'~1¢/, thus In(p') < Ia(p).
Similarly, from pg=* = ¢'~*p’ we get Ia(q') < Ia(q), whence (i).
Moreover, since the number of divisors of a fixed power of A is
finite we get the ultimate periodicity of rev, whence (ii).

Let us prove (iii). We first prove that rev(!)(g) is in M. We have
revV)(g) = den(b)g den(b8)~1 and we have to prove that den(b8)
right-divides den(b)g. Let b= p~q and b€ = u~'v be reduced
fractions. We have thus (pg)~!(qg) = u~tv so that pg = u (and
qg = v). Since den(b€) = u and den(b) = p, we have

revit)(g) € M.

If g, h € M are such that b8 and b8" are in RC(G), then we have
revV(g) revV)(h) = rev(V)(gh), hence rev(l) preserves left
divisibility. Since rev()(A) = A we deduce that if g < A™ for
some m, then rev()(g) < A™ for all i.



Proof continued

Since b and b# are in RC(G), there exists iy such that rev(b) = b
and rev(b€) = bE. Since the number of divisors in M of A™ is
finite, there exist i < j, two multiples of iy, such that

rev()(g) = revt)(g), whence (iii).

(iv) comes from the fact that /a(den(rev/(b))) < Ia(den(b)) for
any j > 0 by (i).

We prove (v). First note that if p~1q is the reduced fraction for b
and g € M is such that &b = c € M, then g = p since

plqg=g (cg) and p~1q is a reduced fraction. Take g such that
I(g) is minimal such that gbg~! € M. Let us write g = g'p.

Now we have gp~1qg ! = g'qp1g’~ = g'rev(b)g’~! and g’ has
minimal length such that g’ rev(b)g’~! € M, since if I(g") < I(g’)
and g"rev(b)g" !t = g"qp~lg"~t € M then

I(g"p) < I(g'p) = I(g) and g"qp~'g"~* = g"pb(g"p) ™t € M, a
contradiction with the minimality of g.

Proof continued.

We can iterate the process, replacing b with rev(b) and g with g’.
Let g(l) =g’ and g(i) be the element obtained at the i-th step.
Since g() < g~ we will get eventually g() =1 (for the first i
such that rev/(b) € M) which shows that RC(b) C M and also
that g = den()(b).

We now claim that H(g’) < H(g). Assume by contradiction
H(g') = H(g). Write g = H(g)T(g). From gp~'q = cg with

c € M we get g'q = cg, hence H(g) = H(g') < cg, whence

H(g) < cH(g). Writing cH(g) = H(g)c1 and cancelling H(g), we
obtain T(g)p~1qT(g)~! = c1 € M, which contradicts the
minimality of g since /(T (g)) < I(g)-

We have thus proved that i < /(H(g)). O

Note that in (iii) we can assume j — i > 1 by adding to j the
length of a period if necessary.



Now M is again a spherical Artin monoid.

Theorem

Let b € RC(G), g € M such that b€ € RC(G). Let | = supp(b)
and J = supp(b&). Then IT1(&) = J.

Proof.

We first note that if b € M, then b8 € M also and we get the
result by Proposition (positive conjugate implies ribbon).

If b=1 € M, since by definition we have den(b) = b1, we get
rev(b) = rev(b~1)7L. Since b and b~! have same support, the
property for b1 gives the result for b.

Proof continued.

In general, by Proposition (reversing circuits)(iii), it is possible to
choose j > i > 0 such that rev'(b) = rev/(b) = b,

rev/(b8) = rev/(b8) = b€ and

(den® (b)) g den)(b8) = (dent) (b)) Lg den¥)(b8).  (17)

Since revi(b) = b, we have denU)(b) = denU~(b) den()(b) and
similarly den)(b&) = denU= (&) den')(b€). Thus the equation
gives denU=) ()8 = denU=)(b8). Let uy(b) = den¥)(b)b. We
still have uj_;(b)& = uj_;(b%). Now note that if p~1q is the
reduced fraction for b and p'~1¢’ that for rev(b) we have

up(b) = den(rev(b))den(b)b = p'pb = p'q = left-lem(p, q), the
last equality since p'q = ¢'p; thus for k > 2 the element uk(b) is
in M and has same support as b and similarly u(b¢) € M with
same support as b&. Up to increasing j we may assume

k =j—i>2and apply Proposition (positive conjugate implies tail
ribbon) to uy(b)® = uk(b#) and we get the result. O



Proposition (Minimal parabolic)

Let b € RC(G). Then Gyypp(p) is the unique minimal parabolic
subgroup of G which contains b.

Proof.

Suppose b € Gf, another parabolic, which is minimal containing b;
let u= &b € G,. By multiplying on the left g by some element of
G, we can replace u by some element in RC(G) N G;.

We may also assume that g € M up to multiplying g by some even
power of A. We may then apply proposition (positive conjugate
implies tail ribbon) to conclude that supp(u) "s#)(&) = supp(b).
We also have supp(u) = J otherwise G¥ is not minimal (since

GE > b already), thus G§ = GJT’(g) =G,

supp(u) supp(b)* o

Corollary

Any element of G is contained in a unique minimal parabolic
subgroup Pain(b).

Proof.
Let b € G and b& € RC(G); then Pujn(b) := & Gyypp(s) is the
unique minimal parabolic subgroup containing b. O



Definition
For b € G we define (b) = I(A) if GF = Puyjn(b).

Note that ¢(b) is a well-defined invariant of the conjugacy class of
b by Proposition (conjugate parabolics). Thanks to Proposition
(minimal parabolic), another way of defining ¢(b) is as /(Agupp(r))
if b’ is any element of RC(b).

Proposition

Let B € G and | C S be such that for any m, we have
w(BAP) < I(Ay). Then B € G;.

Proof.

We first show that for m large enough, we have RC(3A[") ¢ M.
Let | be the topological length on G (for a fraction p~'gq, it is
equal to /(q) — /(p)), which is invariant by conjugacy. If S, is any
element of RC(BA"), we thus have [(8) = I(8) + mn, where

n=1(A)) = (D). |

Proof continued

Now let us define /a(b) for an arbitrary b € G as Ia(p) + Ia(q)
where p~1q is a reduced fraction for b. Then we have

In(BA]") < In(B) 4+ m. The same majoration holds for Ia(3m) by
Proposition (reversing circuits)(i).

Now if B, ¢ M and has reduced fraction say pj,!qm, no term of
the normal form of pp or gm is equal to Agypp(s,,) SO any term x of
these normal forms satisfies /(x) < /(Agupp(g,,)) < 0, the last
inequality by the definition of n and Proposition (Minimal
parabolic). It follows that

1(pm) + I(am) < (n = 1)Ia(Bm) < (n = 1)(Ia(8) + m). Now we

have 1(8) + mn = 1(Bm) < I(pm) + I(gm) < (Ia(B) + m)(n—1), a
contradiction when m is large enough, which refutes the
assumption 8, ¢ M.

For m large enough, since BA]" has a conjugate in M, by
Proposition (reversing circuits)(v) we have rev/(®)(BAT") € M. Let
us denote by ¢, the element den(’m))([v’A;”) of Proposition
(reversing circuits)(iv); this element conjugates SA]" to
rev/(A)(BA).



Proof continued

If a~1b is the reduced fraction for 3, since den(BAf") < a we get
by Proposition (reversing circuits)(iv) that /a(cm) is bounded by
I(A)Ia(a) which is independent of m. Thus we have

(BA)m € M where ¢, € M has I bounded by some number h
independent of m.

In the following lemma we write xi, ..., X, for the r terms of the
normal form of the element x3xz - - - x;.

Lemma
Letcy,...,cr,Ay,..., Ay, d1,...,d: be the normal form of an
—

| term:
element of x € M, \e/vitz J C S, and let c € M. Then the normal
form of cx has at least | — Ip(c) terms equal to A .

Proof.

By induction on /a(c), it suffices to prove that when c is simple,
the normal form of cx has a similar shape to the form of x given in
the statement, with / — 1 terms equal to A in the middle. The
normal form of ccj ... c, Ay is computed recursively from left to
right by replacing ¢, c; by H(cci), T(cc1), then applying this
process to T(cc1) and ¢, etc. .., eventually applying the process
to y and A giving H(yAy), T(yA,); thus the normal form is of
the form ¢f, ..., c},,j where the right descent set of ¢/, contains J
and j € M. It follows that cx = ¢f... c;,A’jzj’AJdl ...d; where
Cfs-s €y Ay, .., Ay is a normal form and j is the conjugate of j
-
I -2 terms
by A’J’z, We now claim that the normal form of j/A d ... d; is of
the form Ay, di, ..., d}. Indeed
H(j'Aydy...d:) = H(j’A)) = Ay. Thus the normal form of cx is
CloeeonCp Ay, Ay, dy, ..., d], which proves that the induction
-

-1 terms -
works. O



Proof continued.

y Proposition (Ribbon prefix) if we write ¢m = Hj(¢m)emdm where
em = ¢/(Ti(cm)) then Jy := [®m C S and the left descent set of
A, dm is Jp. It follows that the normal form of Adem has its

m — 1 first terms equal to Aj,. If a~1b is the reduced fraction for
B, we apply the Lemma to bAJ"c, = bH/(cm)Are,,,AJ””"dm with
J=Jm, ¢ = bHj(cm)*" em and x = AT dp, and, using that /a(c)
is bounded by h + Ia(b), conclude that in the normal form of
bA[' ¢ there are at least m — 1 — h — Ia(b) terms equal to A ;.
Since cn’qla’le,"’cm € M, the element ac,, must divide the first
In(acm) terms of the normal form of bAJ"c,. Thus the last
In(bA'cm) — In(acm) terms of the normal form of bA["cy, are a
right divisor of (3AJ") € M, and since Ia(acm) is bounded by
h+ In(a), for m large enough these terms contain at least one
copy of Ay,. Thus the support of (BA]")" contains Jn. Since
I(Ay,) = I(Af) = n, the support cannot be greater than Jp, by
the assumption on @(SA]"), so is equal to Jp,. It follows in
particular that dp, € G, so that e;,lﬁA?’em € Gy, thus

BAJ € Gemy,, = Gy, thus finally 3 € G;. [}

Theorem

The intersection of two parabolic subgroups of G is a parabolic
subgroup.

Proof.

Let P and Q be two parabolic subgroups, and let H € PN Q be an
element with ¢(H) maximal amongst elements of PN Q. We claim
that PN Q = Ppin(H). Up to conjugating H, P, @ we may (and
we will) assume that Pyn(H) is the standard parabolic G;. Let

B € PNQ;since BAT" € PN Q we have p(BA]") < p(H) = I(4))
thus by the above Proposition we have § € G. O



