
ORDERING BRAIDS: IN MEMORY OF PATRICK DEHORNOY
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With the untimely passing of Patrick Dehornoy in September 2019, the world of
mathematics lost a brilliant scholar who made profound contributions to set theory,
algebra, topology, and even computer science and cryptography. And I lost a dear
friend and a strong influence in the direction of my own research in mathematics. In
this article I will concentrate on his remarkable discovery that the braid groups are
left-orderable, and its consequences, and its strong influence on my own research.
I’ll begin by describing how I learned of his work.

1. When I met Patrick

In the late 1990’s I had been working on a conjecture of Joan Birman [1] regarding
the braid groups Bn and the (larger) monoids SBn of singular braids. I remind
the reader that Bn has the presentation with generators σ1, . . . , σn−1 and relations
σiσj = σjσi if |i− j| > 1 and σiσjσi = σjσiσj when |i− j| = 1.

Figure 1: The Artin generator σi

In addition to the usual Artin generators σi in which the i-th strand passes
below the next strand, SBn has elements τi in which those strands intersect each
other. In the study of SBn and influenced by Vassiliev theory, Birman proposed
the following mapping:

σi −→ σi

τi −→ σi − σ−1i
For this to make sense, the target needs to be not just Bn, but rather the group
ring ZBn. She conjectured that this map SBn → ZBn is injective.

Investigating this problem with a student at the time, Jun Zhu, we were making
calculations in ZBn, including cancellations such as ab = ac =⇒ b = c. Such an
implication is not valid in a ring if there are zero divisors involved. It’s possible
that a(b − c) = 0 but neither a nor b − c is zero. So we always had to check that
we were not cancelling zero-divisors. This led me to the question of whether zero-
divisors actually exist in ZBn. I asked various experts, such as Vaughan Jones and
Joan Birman, whether they knew the answer to that question. Joan replied that
some work of Dehornoy might be relevant. I found the paper [5] in which Patrick
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proved the result that there is a strict total ordering of the braid group Bn which
is invariant under left-multiplication. To my delight, this answered my question,
as I also learned that left-orderable groups have the property that their integral
group rings have no zero divisors. (This is conjectured to be true more generally
for torsion-free groups.)

The main point of the paper [5], as stated there, was to prove:

Theorem 1. There is an effective algorithm for deciding whether a given identity
is or is not a consequence of the left distributivity identity x(yz) = (xy)(xz).

This was motivated by the study of elementary embeddings in set theory. I
confess that I did not (and still do not) completely understand that paper. In
hopes of learning more, I contacted Patrick and arranged to meet him to discuss
his ordering, during a planned trip across the Atlantic to attend a conference in
England. I think it was summer of 1998. We met over dinner in Paris, accompanied
by his charming wife, Arlette, who is also a mathematician. Patrick very patiently
tried to explain his ordering of Bn. Although I did grasp some of the details, I did
not understand the crucial fact upon which the ordering depends, namely Theorem
3 stated below. His proof involved a partial action of Bn on the Cartesian product
of n copies of a self-distributive set, which in turn can be ordered. These were
beyond my comprehension, and I think quite mysterious to topologists.

2. Patrick’s influence on me

A few days later, at the conference in Sussex – Roger Fenn was one of the
organizers – I gave a talk and explained what I knew about Dehornoy’s ordering of
Bn, why I found it exciting, and asked if we could fashion an argument that was
understandable to topologists. A number of us got thinking about this problem,
sometimes over pints, and we eventually, weeks later, managed to find an alternative
proof [12], using the interpretation of Bn as the mapping class group of the n-
punctured disk. If a braid in Bn is interpreted as a homeomorphism of the round
disk in the complex plane with diameter the real interval [0, n + 1], fixed on the
boundary and permuting the punctures {1, 2, . . . , n}, one looks at the image of the
real axis. This is only defined up to homeomorphism fixed on the punctures and
the boundary, but one can insist the image of the real line intersects the real line
minimally. The result is called a curve diagram. The positive cone is then all braids
for which the curve diagram (reading left to right) first departs from the real line
into the upper half-plane. Remarkably, this coincides with the set of σ-positive
braids as will be defined later (Definition 2).

Figure 2: Curve diagrams for (a) the identity, (b) σ1 and (c) σ1σ
−1
2 .

Incidentally, Zhu and I did not solve Birman’s conjecture except for the cases
n ≤ 3, but it was solved a few years later in the affirmative by Luis Paris [20].
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This experience, and Patrick’s influence, changed the thrust of my own research.
I had not even heard of orderable groups before learning of his braid ordering. The
seed had been planted, and I’ve spent many happy years since then studying ordered
groups and their connections with topology. This includes two books, [8] and [9],
which were mostly written by Patrick, but with contributions by Ivan Dynnikov,
Bert Wiest and myself. I spent many pleasant days in Patrick’s home office in
Evreux working with him, occasionally being on the phone with Bert or emailing
Ivan, putting together those books. Our friendship grew accordingly.

3. Patrick’s many talents

As we worked together, I came to appreciate Patrick’s many talents, besides his
obvious talents as a mathematician. He had impressive musical skills at the piano.
He was an expert builder: much of his home was built by himself. He had a very
caring personality and a great interest in philosophy. We had many discussions on
that subject.

One of his hidden talents came to the fore in Caen in 2007. Patrick had nomi-
nated me for an honorary degree from the University of Caen, and to my shock (and
delight) the nomination was successful. The recipients (as well as the nominators)
are expected to wear academic gowns and make a short speech at the very formal
occasion of the awards. My French is terrible, but I worked hard to prepare a speech
en français, to the effect that one of my mathematical heros, Henri Poincaré, had
been a professor in Caen, which made the award extra special to me. Then, to the
great surprise of myself and others, Patrick gave a speech in Latin! He had learned
Latin many years ago and was still fluent enough to give the speech without written
notes, in keeping with the medieval tone of the gathering.

4. Patrick and set theory

I greatly admired Patrick’s understanding of the issues of modern set theory. In
2014 he visited Vancouver as Distinguished Scholar, in a program co-sponsored by
the French Consulate, the Pacific Institute for the Mathematical Sciences, and the
Peter Wall Institute for Advanced Studies. Besides seminar talks and formalities,
the culmination of the visit was a special public lecture. Here is the abstract of
Patrick’s fabulous talk “Set Theory: the last 50 years.”

“At the interface of Mathematics, Computer Science, and Philosophy, Set Theory
is both a fascinating subject and the victim of several misunderstandings: after the
great successes in the first half of the XXth century, Set Theory was (mistakenly)
thought to be a universal dogma resulting in well-known educational damages and
to have come to an end, with a few mysterious questions due to remain open
forever. The aim of the lecture will be to present a more accurate view of what
Set Theory is, namely a theory of infinity and what it is not. Starting from a
historical approach and putting the emphasis on Cantor’s celebrated Continuum
Problem, we shall explain what is the meaning of the remarkable results established
by Goedel and by Cohen. But, then, and mainly, we shall present a few results of
modern Set Theory as it developed after Cohen, a most ignored topic in spite of
wonderful achievements. In particular, we shall explain how some new axioms by
and by acquired a status of mathematical truths, inviting everyone to develop his
own reflection about truth and infinity in mathematics.”
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It was indeed a most memorable talk. One of the main themes was large car-
dinals, which cannot be proven to exist in standard axioms of set theory. Indeed,
Patrick’s first argument for the existence of the σ-ordering assumed the existence of
certain large cardinals. Again in Patrick’s words [6], recalling the left-distributive
axiom x(yz) = (xy)(xz),

“The linear ordering of the braid group has been derived from a linear ordering
on the free left-distributive system with one generator. The first complete proof of
the existencee of the latter ordering occurred in a paper by R. Laver about large
cardinals [16], and a large cardinal axiom from set theory was explicitly used to
prove the ordering’s irreflexivity (or the absence of cycle for the left divisibility
relation in the terminology of the present text). This gave rise of course to the
question of whether the large cardinal axiom was needed for the property. Actually
it is not, as we shall see .... The point here is that considerations of highly infinite
objects (elementary embeddings) have led to an intuition that ended in results of the
most constructive spirit (for example a new algorithm for braid word comparison).”

5. Properties of Dehornoy’s ordering

To return to the braid ordering, Dehornoy gives the following definition:

Definition 2. A braid β ∈ Bn is σi-positive if it has an expression in which σi
occurs with only positive exponents, and no σj appears for j < i. Call β σ-positive
if it is σi-positive for some i with 1 ≤ i ≤ n− 1.

Let P ⊂ Bn denote the set of all σ-positive n-braids, Dehornoy proved the
following highly nontrivial fact.

Theorem 3 ([5]). For every braid β ∈ Bn, exactly one of the following holds:
β ∈ P, β−1 ∈ P, β = 1.

The following is easy to see:

Proposition 4. The product of two n-braids in P is again in P , that is, P is a
sub-semigroup of Bn.

Then the σ-ordering < is defined by

α < β ⇐⇒ α−1β ∈ P.

The terminology “σ-ordering” is due to Patrick, in modesty I think. Most other
people call it the Dehornoy ordering. From the properties of the positive cone
P = {β ∈ Bn | 1 < β} mentioned above, it is easy to check:

Corollary 5. The relation < is a strict total ordering of Bn satisfying α < β iff
γα < γβ.

This ordering has many interesting properties.

Proposition 6. The Dehornoy ordering is a discrete ordering of Bn, that is there
is a smallest braid which is greater than the identity, namely σn−1.

To see this, first observe that σn−1 is σ-positive. Moreover, if there were an
n-braid β such that 1 < β < σn−1 we would conclude that β−1σn−1 is σ-positive.
By Theorem 3, β−1 is not σ-positive. This implies that β−1σn−1 must be σn−1-
positive, and therefore a positive power of σn−1. This leads to a contradiction.
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It follows that there is also a greatest element of Bn less than the identity in the
Dehornoy ordering, namely σ−1n−1. Thus we see that every braid has an immediate
successor in the order, and also an immediate predecessor.

By contrast, certain subgroups of Bn, are densely ordered by the same ordering,
that is any two distinct braids in the subgroup have another braid in the subgroup
strictly between them. Notice that all the generators σi are conjugate in Bn,
for example (σ1σ2)σ1(σ1σ2)−1 = σ2. Therefore the abelianization of Bn is infinite
cyclic, and the commutator subgroup [Bn, Bn] consists of all braids whose exponent
sum, in terms of the σi, is zero.

Theorem 7 ([3]). If n ≥ 3 the commutator subgroup [Bn, Bn] of Bn is densely
ordered in the restriction of the Dehornoy ordering. In particular, [Bn, Bn] contains
no smallest σ-positive element.

Some other subgroups of Bn also have this density property, for example it is
shown in [3] that the kernel of the Burau representation, for dimensions in which
it is known to be unfaithful (n ≥ 5).

The subgroup PBn of pure braids, which has index n! in Bn, consists of braids
whose strands begin and end at the same level. That is, PBn is the kernel of the
homomorphism from Bn to the symmetric group Σn sending σi to the permutation
interchanging i and i+1. PBn does have a smallest positive element, namely σ2

n−1.

Theorem 8 ([15]). PBn can be given a strict total ordering (not the restriction of
Dehornoy’s ordering) which is invariant under multiplication on both sides.

One way to see this is to note that by a process called Artin combing, PBn can
be expressed as a semidirect product of free groups, which in turn possess 2-sided
orderings. The following can be easily checked, either by drawing a picture or using
the braid relations.

Example 9. Let β = σ1σ
−1
2 and γ = σ1σ2σ1 be braids in Bn, n ≥ 3. Then

γ−1βγ = β−1.

Proposition 10. For n ≥ 3, Bn cannot admit a strict total ordering which is
invariant under multiplication on both sides.

That’s because 1 < β ⇐⇒ β−1 < 1 always holds for a left (or right) invariant
order. A 2-sided ordering of Bn would be invariant under conjugation. An equation
γ−1βγ = β−1 therefore cannot hold (for β 6= 1) in a bi-orderable group. In fact
more is true. The following is proved in [22] and independently in [10].

Theorem 11. For n ≥ 3, no 2-sided ordering of PBn can be extended to a left-
invariant ordering of Bn.

Let B+
n denote the positive braid monoid, that is, all n-braids which can be

expressed as words in the σi using no negative exponents. It is clear that all braids
in B+

n \ {1} are greater than the identity in the Dehornoy ordering.

Theorem 12 ([17]). The restriction of Dehornoy’s ordering to B+
n is a well-

ordering, meaning that every nonempty subset has a least element.

The order type is known to be rather large. In his doctoral thesis [2], Burckel

showed that the Dehornoy well-ordering of B+
n has order type ωω

n−2

.



6 DALE ROLFSEN

6. Applications to knot theory

The main connection between braid groups and knot theory is the closure of a

braid β̂, in which the ends of the strands of β are connected without any further
crossings. Every knot or link can be realized as the closure of some braid, according
to a theorem of Alexander.

Let ∆2
n = (σ1σ2 · · ·σn−1)n ∈ Bn be the (square of the) Garside element. We

may abbreviate ∆2
n = ∆2 when the braid index n is understood from the context.

Then ∆2 is a pure braid, is a generator of the infinite-cyclic center of Bn, if n > 2,
and its powers are cofinal in the Dehornoy ordering of Bn. It corresponds to a
“full twist.” Malyutin and Netsvetaev showed that braids sufficiently far from the
identity in the ordering behave nicely under closure.

Theorem 13 ([19]). Suppose n ≥ 3 and β ∈ Bn is not in the interval [∆−4,∆4]

with respect to the Dehornoy order. Then the link closure β̂ is prime, non-split and
nontrivial.

A braid, considered as a mapping class of the disk with n punctures, has an
associated Thurston classification, being periodic, reducible or pseudo-Anosov. For
braids far enough from the identity in the Dehornoy order, these concepts corre-
spond exactly the knot type, according to the following result of Tetsuya Ito.

Theorem 14 ([14]). Suppose β ∈ Bn, that β̂ is a knot and β is not in the interval

[∆−4,∆4] with respect to the Dehornoy order. Then β̂ is a torus knot iff β is
periodic, a satellite knot iff β is reducible, and a hyperbolic knot iff β is pseudo-
Anosov.

The genus g(K) of the knot K ⊂ S3 is the least genus of all oriented surfaces in
S3 bounded by the knot. The Dehornoy order gives a lower bound to knot genus:

Theorem 15 ([13]). Suppose n ≥ 3 and β ∈ Bn satisfies ∆2m < β or β < ∆−2m.

If K = β̂ is a knot, then m < g(K) + 1.

As already mentioned, every knot or link arises as the closure of a braid, but an
important and often difficult question is: what is the least n such that a given link
is the closure of an n-strand braid? This minimum is called the braid index of the
knot or link. Again, Dehornoy’s ordering sheds light on the braid index problem. A
recent result of Feller and Hubbard gives the following, which had been conjectured
by Malyutin and Netsvetaev.

Theorem 16 ([11]). Fix an integer n ≥ 2, and suppose β ∈ Bn satisfies ∆2n < β

or β < ∆−2n. Then the closure β̂ of β does not occur as the closure of a braid with
fewer than n strands.

7. The space of orderings

There are many possible left-orderings of Bn, for n ≥ 3. Although the Dehornoy
ordering plays a special rôle, it is by no means the only one.

Theorem 17. If n ≥ 3, then Bn has uncountably many distinct left-invariant
orderings.

It is not difficult to check that Bn has infinitely many left-orders, so this follows
from a theorem of Peter Linnell [18], that for any group G, the set of left-orderings



ORDERING BRAIDS: IN MEMORY OF PATRICK DEHORNOY 7

of G is either finite or uncountably infinite. For any group G, the set LO(G) of
all left-orderings has a natural topology, as described in [23]. A typical neigh-
bourhood of an ordering is to specify a finite set of inequalities that hold in the
ordering (alternatively, choose a finite set of elements greater than the identity).
The corresponding neighbourhood consists of all possible left-orderings in which
those inequalities still hold. This makes LO(G) into a topological space which is
compact, Hausdorff, and totally disconnected [23].
LO(G) may have isolated points. For countable groups G, if LO(G) is infinite

and has no isolated points, then it is homeomorphic with the Cantor set. G acts on
LO(G) by conjugation: given ≺∈ LO(G) and h ∈ G one can define the conjugate
ordering ≺h∈ LO(G) by f ≺h g ⇐⇒ h−1fh ≺ h−1gh (which by left-invariance
is equivalent to fh ≺ gh). It is easy to see that the mapping ≺→≺h is a homeo-
morphism of LO(G). More generally, any automorphism of G acts on LO(G) in a
similar manner.

Dubrovin and Dubrovina described orderings of Bn, n ≥ 3 with the property
that their positive cones are finitely generated as sub-semigroups. It follows that
they represent isolated points in the space LO(Bn). For the case n = 3 we can
take the positive cone PDD of the ordering <DD to be the set of all braids which
are either σ1-positive or else σ2-negative. It’s an interesting exercise to check that
PDD is generated by σ1σ2 and σ−12 as a monoid, and is therefore the only ordering
of B3 in which those elements are positive.

Theorem 18. If n ≥ 3, the space LO(Bn) contains isolated points. However,
the Dehornoy ordering is not isolated in LO(Bn); in fact it is a limit point of its
conjugates.

See, for example [9], p. 269 for a proof of the latter part of the theorem. Another
group of interest is B∞, which can be thought of as the direct limit, or union of the
Bn, under the natural inclusions Bn ⊂ Bn+1. B∞ has a presentation with infinitely
many generators σi, for i ∈ N and the usual braid relations.

Proposition 19. LO(B∞) has no isolated points, and therefore is homeomorphic
with the Cantor set. Every left-ordering is a limit point of its conjugates.

To see this, consider a finite number of positive elements F ⊂ B∞ for a left-
ordering ≺. Then F ⊂ BN for some finite N . Then for i > N , σi commutes with
all the braids in F , and therefore the braids in F are positive in the conjugate
ordering ≺σi . In other words, ≺σi is in the neighbourhood of ≺ defined by F . It
remains to check that at least some of the ≺σi

are distinct from ≺ as orderings
of B∞. If that were not the case, then on the subgroup 〈σN+1, σN+2, . . . 〉 we
could conclude that ≺ was both right and left invariant, which is not possible, as
〈σN+1, σN+2, . . . 〉 ∼= B∞ is not bi-orderable.

8. Le Paradis des mathématiciens

One of Patrick’s most unusual (and amusing) accomplishments is the video “Le
Paradis des mathématiciens” [7]. He is the director and also plays the leading
role of a mathematician who dies and goes to heaven, where he can look down at
events on earth through a telescope. He waits several centuries fearing that his
beloved mathematical work had been forgotten. Finally a student of the future
discovers his book ([9] in fact), and finds a theorem of Patrick’s is exactly what
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he needed to construct his “turbulence algebra.” Patrick sees this through the
telescope and there is joy again in paradise. The reader is strongly encouraged to
view it: https://vimeo.com/205778279

This story, and the production of it, is a witness to one more of Patrick’s strong
points: his wonderful sense of humor. Even now, I sometimes picture him up there
with his telescope.
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