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Ordered groups

This talk is dedicated to the memory of Patrick Dehornoy. It
represents joint work with Eiko Kin.

A left-ordering of a group G is a strict total ordering < of its
elements so that

g < h =⇒ fg < fh

for all f , g , h ∈ G . If also g < h =⇒ gf < hf , the ordering is
called a bi-ordering.
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Ordered groups

If < is a left-ordering of G , the positive cone P = {g ∈ G |1 < g}
satisfies:
(1) if p, q ∈ P then pq ∈ P, that is P is a sub-semigroup.
(2) For each g ∈ G exactly one of g ∈ P, g−1 ∈ P or g = 1 holds.

Moreover, given a subset P satisfying (1) and (2), we can define a
left-ordering of G by declaring g < h ⇐⇒ h−1g ∈ P.
P defines a bi-ordering by the same formula iff it also satisfies
(3) if p ∈ P and g ∈ G , then gpg−1 ∈ P.
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Ordered groups

Left- and bi-orderable groups have special properties. They are
torsion-free and satisfy the zero-divisor conjecture: If R is a ring
with no zero divisors and G is a left-orderable group, then the
group ring R[G ] has no zero-divisors.

Moreover, the only units of R[G ] are the “trivial” ones rg with r a
unit of R and g ∈ G .
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Ordered groups

Bi-orderable groups have unique roots, meaning that f n = gn for
some n > 0 implies f = g .

They also have no generalized torsion
elements, meaning a nonidentity element for which a nontrivial
product of its conjugates is the identity.
Left- and bi-orderability are local properties, that is, a group G has
the property iff each of its finitely-generated subgroups has.

Proposition

An abelian group is bi-orderable iff it’s torsion-free.

On the other hand, there are many torsion-free (nonabelian)
groups which fail to be left-orderable.
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Ordered groups

Theorem
Free groups are bi-orderable.

To see this consider a free group F , which we may assume
finitely-generated, and consider the lower central series
F = F1 ⊃ F2 ⊃ F3 ⊃ · · · , defined inductively by Fi+1 = [F ,Fi ]. As
is well-known, ∩∞n=1Fi = {1}. and the lower-central quotients
Fi/Fi+1 are finitely-generated free abelian groups, so we may
choose a bi-ordering for each of those quotients.
Call an element 1 6= x ∈ F positive if its class {x} ∈ Fi/Fi+1 is
positive in the chosen ordering of Fi/Fi+1, where i is the greatest
integer such that x ∈ Fi . It’s routine to check that this positive
cone defines a bi-ordering of F . Such an ordering of F will be
called a “standard” ordering of F . There are many others.
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Ordered groups

Patrick Dehornoy famously defined a left-ordering on the braid
groups Bn, which has generators σ1, . . . , σn−1 and relations:
σiσj = σjσi when |i − j | > 1 and σiσi+1σi = σi+1σiσi+1.

For n ≥ 3 the braid group Bn is NOT bi-orderable. Indeed the
braid relation σ1σ2σ1 = σ2σ1σ2 implies that (σ1σ2)3 = (σ2σ1)3

whereas σ1σ2 6= σ2σ1. Thus Bn does not have unique roots.
On the other hand, the pure braid groups Pn are bi-orderable.
It is known that no bi-ordering of Pn extends to a left-ordering of
Bn.
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Braid groups

Artin observed that the braid group Bn acts on the free group Fn
by automorphisms, and indeed this representation Bn → Aut(Fn) is
faithful. It is convenient to think of braids acting on the right:

x → xβ

where x ∈ Fn, β ∈ Bn. Then we have x (βγ) = (xβ)γ .

Specifically, if the generators of Fn are x1, . . . , xn, the Artin action
of the generator σi is:
xi+1 → xi , xi → xixi+1x

−1
i and xj → xj if j /∈ {i , i + 1}.
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Order-preserving braids

Definition
A braid β ∈ Bn is order-preserving if there is a bi-ordering < of Fn
preserved by β, that is, x < y ⇐⇒ xβ < yβ.

Note that the identity braid is order-preserving, and the inverse of
an order-preserving braid is also order-preserving.

Proposition

The Artin generator σi is NOT order-preserving.

Indeed, if there were a bi-ordering < of Fn preserved by σi we may
assume xi < xi+1. Applying σi we would conclude that
xixi+1x

−1
i < xi . Since < is conjugation-invariant, we’d conclude

the contradiction xi+1 < xi .
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Order-preserving braids

Theorem
Every pure braid is order-preserving.

To see this, note that the action of a pure braid on the rank n free
group F , induces the identity on the abelianization Zn = F/[F ,F ].
One then proves that it also acts by the identity on all the
lower-central quotients. Therefore, it preserves every standard
ordering of F .

Corollary

The square σ2i of each Artin generator is order-preserving.

Corollary

For every braid β ∈ Bn some power βk is order-preserving.
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Order-preserving braids

If β ∈ Bn define the “braided link” br(β) = β̂ ∪ A to be the union
of the braid closure and the braid axis in S3.

axis

β β

(1) (2)
A

(3)

Figure: (1) Closure β̂. (2) br(β) = β̂ ∪ A. (3) br(σ1σ2) is equivalent to
the (6, 2)-torus link.
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Order-preserving braids

Theorem
The braid β ∈ Bn is order-preserving if and only if the fundamental
group of the complement S3 \ br(β) is bi-orderable.

Corollary

β ∈ Bn is OP iff each conjugate of β is OP iff β∆2
n is OP, where

∆2
n is the full twist.

Corollary

For any braid β, The group π1(S3 \ br(β)) has a finite-index
normal subgroup which is bi-orderable.

Corollary

Suppose β ∈ Bn and γ ∈ Bm satisfy S3 \ br(β) ∼= S3 \ br(γ), then
β is OP iff γ is OP.
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Order-preserving braids

If a link has an unknotted component, one can perform a disk
twist along a disk bounded by that component. The result is a
homeomorphism of the link complement, which might well change
the link itself.

D

(1)

L K

D

T ( ) D L K

(2)

l T ( ) D l 



Order-preserving braids

Proposition

For each k ≥ 2, the braid σ1σ2 · · ·σkσ1 is order-preserving.

disk twist

Figure: nth power of the disk twist converts the braided link of σ2
1 to that

of σ1σ2 · · ·σn+1σ1. (n = 2 in this case.)
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Order-preserving braids

Let OPn denote the set of order-preserving braids in Bn. For n ≥ 3
we observe that OPn is NOT closed under multiplication.

Indeed we just saw that σ1σ2σ1 ∈ OPn, and σ−21 ∈ OPn, being a
pure braid. But their product is σ1σ2σ

−1
1 , which is not

order-preserving, being conjugate to σ2.
On the other hand OPn contains the finite-index subgroup Pn of
pure braids. We also have:

Proposition

The set OPn generates Bn.

In other words, every braid is a product of order-preserving braids.
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Order-preserving braids

There is a tensor product operation Bm × Bn → Bm+n defined as
follows

β

(1) (2) (3)

β

Figure: (1) α ∈ Bm. (2) β ∈ Bn. (3) α⊗ β ∈ Bm+n.

Theorem
α⊗ β is order-preserving if and only if both α and β are
order-preserving.

Corollary

Suppose n < k and β ∈ Bn ⊂ Bk under the natural inclusion.
Then β is OP in Bn iff it is OP in Bk .
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Small hyperbolic 3-manifolds
We now turn to applications to the orderability of fundamental
groups of certain minimal-volume orientable hyperbolic
3-manifolds.

According to Gabai, Meyerhoff and Milley,

Theorem
The unique closed minimal-volume orientable hyperbolic
3-manifold is the Weeks manifold, obtained by 5/1 and 5/2
surgery on the Whitehead link.
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Small hyperbolic 3-manifolds

Calegary and Dunfield showed that

Proposition

The fundamental group of the Weeks manifold is not left-orderable.

In fact they showed the stronger result that it is not circularly
orderable.



Small hyperbolic 3-manifolds

Cao and Meyerhoff showed that there are two minimal examples in
the case of one cusp.

Theorem
An orientable hyperbolic 3-manifold with one cusp, of minimal
volume, is homeomorphic either to the figure 8 complement, or its
sibling which is obtainable from the Whitehead link by 5/1 surgery
on one component.

Proposition

The fundamental group of the figure 8 complement is bi-orderable.
That of its sibling is not bi-orderable.

Both these examples are realized as fibrations over the circle. For
the figure 8 complement, there are two positive eigenvalues. For
the sibling, the eigenvalues are both negative.
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Now we consider the case of two cusps.

Agol proved the following

Theorem
A minimal volume 2-cusped orientable hyperbolic 3-manifold is
homeomorphic with either the Whitehead link complement or the
complement of the (−2, 3, 8) pretzel link.

Proposition

The fundamental group of the Whitehead link complement is
bi-orderable.

We’ll use our braid ordering theory to argue that

Proposition

The fundamental group of the (−2, 3, 8) pretzel link complement is
NOT bi-orderable.
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The following shows that the 5-braid β = σ31σ2σ3σ4 has br(β)
equivalent to the (-2, 3, 8) pretzel link.

(1) (4)(2) (3)

Proposition

The braid β = σ31σ2σ3σ4 is not order-preserving.

This can be shown by contradiction, as in the case of the Artin
generator.
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Recall that σ1σ2σ3σ4σ1 is order-preserving, and therefore its
conjugate σ21σ2σ3σ4 is also order-preserving. However σ1σ2σ3σ4
and σ31σ2σ3σ4 are not.



Small hyperbolic 3-manifolds

Consider the following links in S4:

(4)(1) (2) (3)

Figure: (1) C3. (2) C4. (3) C5. (4) C6.

Yoshida proved:

Theorem
A minimal volume 4-cusped orientable hyperbolic 3-manifold is
homeomorphiic with S3 \ C4.



Small hyperbolic 3-manifolds

Proposition

The fundamental group of S3 \ C4 is bi-orderable.

This follows since the complement of C4 is homeomorphic with the
complement of br(σ−21 σ22), whose group is biorderable, since the
braid is a pure braid.

(1) (2) (3)

disk twist

Figure: S3 \ br(σ−2
1 σ2

2) is homeomorphic to S3 \ C4. (1) br(σ−2
1 σ2

2).
(2)(3) Links which are equivalent to C4.
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It has been conjectured that the complement of C5 has volume
smaller than all other 5-cusped hyperbolic orientable 3-manifolds.

Proposition

The fundamental group of S3 \ C5 is bi-orderable.

This follows because it is homeomorphic with S3 \ br(σ−21 σ−22 σ−23 )

(1) (2) (3)

Similarly, S3 \ C6 has bi-orderable fundamental group, as it is
homeomorphic to S3 \ br(σ−21 σ−22 σ−23 σ−24 ).
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Small hyperbolic 3-manifolds

We’ll end with the case of 3 cusps. S3 \C3 is known as the “Magic
manifold,” as it was called by Gordon and Wu. It is conjectured to
be the minimal volume 3-cusped orientable hyperbolic 3-manifold.

(1) (2)

disk 

-twist

Figure: S3 \ br(σ2
1σ

−1
2 ) is homeomorphic to S3 \ C3. (1) br(σ2

1σ
−1
2 ). (2)

Link which is equivalent to C3.



Small hyperbolic 3-manifolds

We’ll end with the case of 3 cusps. S3 \C3 is known as the “Magic
manifold,” as it was called by Gordon and Wu. It is conjectured to
be the minimal volume 3-cusped orientable hyperbolic 3-manifold.

(1) (2)

disk 

-twist

Figure: S3 \ br(σ2
1σ

−1
2 ) is homeomorphic to S3 \ C3. (1) br(σ2

1σ
−1
2 ). (2)

Link which is equivalent to C3.



Small hyperbolic 3-manifolds

Question: Is the fundamental group of the magic manifold
bi-orderable? Equivalently, is the 3-braid σ21σ

−1
2 order-preserving?

THANK YOU
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