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represents joint work with Eiko Kin.
A left-ordering of a group G is a strict total ordering < of its
elements so that

g<h = fg<th

forall f,g,he G. Ifalso g < h = gf < hf, the ordering is
called a bi-ordering.
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If < is a left-ordering of G, the positive cone P = {g € G|1 < g}
satisfies:

(1) if p,g € P then pg € P, that is P is a sub-semigroup.

(2) For each g € G exactly one of g € P,g=! € P or g = 1 holds.
Moreover, given a subset P satisfying (1) and (2), we can define a
left-ordering of G by declaring g < h < h™lg e P.

P defines a bi-ordering by the same formula iff it also satisfies
(3)if pc Pand g € G, then gpg™! € P.
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torsion-free and satisfy the zero-divisor conjecture: If R is a ring
with no zero divisors and G is a left-orderable group, then the
group ring R[G] has no zero-divisors.
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Left- and bi-orderable groups have special properties. They are
torsion-free and satisfy the zero-divisor conjecture: If R is a ring
with no zero divisors and G is a left-orderable group, then the
group ring R[G] has no zero-divisors.

Moreover, the only units of R[G] are the “trivial” ones rg with r a
unit of R and g € G.
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Bi-orderable groups have unique roots, meaning that 7 = g" for
some n > 0 implies f = g. They also have no generalized torsion
elements, meaning a nonidentity element for which a nontrivial
product of its conjugates is the identity.

Left- and bi-orderability are local properties, that is, a group G has
the property iff each of its finitely-generated subgroups has.

Proposition
An abelian group is bi-orderable iff it's torsion-free.

On the other hand, there are many torsion-free (nonabelian)
groups which fail to be left-orderable.
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Theorem
Free groups are bi-orderable.

To see this consider a free group F, which we may assume
finitely-generated, and consider the lower central series

F=F D>F,D>F;D---, defined inductively by Fi11 = [F, Fi]. As
is well-known, N7 ; F; = {1}. and the lower-central quotients
Fi/Fii1 are finitely-generated free abelian groups, so we may
choose a bi-ordering for each of those quotients.

Call an element 1 # x € F positive if its class {x} € F;/Fi+1 is
positive in the chosen ordering of F;/F;y1, where i is the greatest
integer such that x € F;. It's routine to check that this positive
cone defines a bi-ordering of F. Such an ordering of F will be
called a “standard” ordering of F. There are many others.
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For n > 3 the braid group B, is NOT bi-orderable. Indeed the
braid relation o10201 = 020102 implies that (0102)3 = (0201)
whereas o109 # 0071.
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Ordered groups

Patrick Dehornoy famously defined a left-ordering on the braid
groups B, which has generators o1, ...,0,_1 and relations:

0j0j = 00; when |i —‘j’ > 1 and 0i0j4+10j] = 0j410i041.

For n > 3 the braid group B, is NOT bi-orderable. Indeed the
braid relation o10201 = 020102 implies that (0102)3 = (0201)3
whereas 0107 # 0p01. Thus B, does not have unique roots.

On the other hand, the pure braid groups P, are bi-orderable.

It is known that no bi-ordering of P, extends to a left-ordering of
B,.
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Braid groups

Artin observed that the braid group B, acts on the free group F,
by automorphisms, and indeed this representation B, — Aut(F,) is
faithful. It is convenient to think of braids acting on the right:

X—)Xﬁ

where x € F,, 3 € B,. Then we have x(%7) = (x#)7.

Specifically, if the generators of F,, are xi,..., x,, the Artin action
of the generator o; is:

Xit1 — Xi, Xi — X;X;+1Xfl and x; — x; if j & {i,i+1}.
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Order-preserving braids

Definition

A braid 5 € B, is order-preserving if there is a bi-ordering < of F,
preserved by 3, that is, x <y <= x% < yB.

Note that the identity braid is order-preserving, and the inverse of
an order-preserving braid is also order-preserving.

Proposition

The Artin generator o; is NOT order-preserving.

Indeed, if there were a bi-ordering < of F,, preserved by o; we may
assume x; < xj+1. Applying o; we would conclude that

x,-x,-+1x,-_1 < x;. Since < is conjugation-invariant, we'd conclude
the contradiction xjy1 < Xx;.
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One then proves that it also acts by the identity on all the
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If 5 € B, define the “braided link” br(8) = B U A to be the union
of the braid closure and the braid axis in S3.
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Figure: (1) Closure 3. (2) br(8) = BU A. (3) br(c102) is equivalent to
the (6,2)-torus link.



Order-preserving braids

If 5 € B, define the “braided link” br(8) = B U A to be the union
of the braid closure and the braid axis in S3.

\ &
)2
/g\) <>
Q) s @ )

Figure: (1) Closure 3. (2) br(8) = BU A. (3) br(c102) is equivalent to
the (6,2)-torus link.



Order-preserving braids

Theorem
The braid 8 € B, is order-preserving if and only if the fundamental
group of the complement S\ br(3) is bi-orderable.



Order-preserving braids

Theorem
The braid 8 € B, is order-preserving if and only if the fundamental
group of the complement S\ br(3) is bi-orderable.

Corollary
B € B, is OP iff each conjugate of B is OP iff BA2 is OP, where
A2 is the full twist.



Order-preserving braids

Theorem
The braid 8 € B, is order-preserving if and only if the fundamental
group of the complement S\ br(3) is bi-orderable.

Corollary

B € B, is OP iff each conjugate of B is OP iff BA2 is OP, where
A2 is the full twist.

Corollary

For any braid 3, The group m1(S3 \ br(83)) has a finite-index
normal subgroup which is bi-orderable.



Order-preserving braids

Theorem
The braid 8 € B, is order-preserving if and only if the fundamental
group of the complement S\ br(3) is bi-orderable.

Corollary

B € B, is OP iff each conjugate of B is OP iff BA2 is OP, where
A2 is the full twist.

Corollary

For any braid 3, The group m1(S3 \ br(83)) has a finite-index
normal subgroup which is bi-orderable.

Corollary

Suppose 3 € B, and vy € By, satisfy S3\ br(3) =2 S3\ br(v), then
B is OP iff v is OP.



Order-preserving braids

If a link has an unknotted component, one can perform a disk
twist along a disk bounded by that component. The result is a
homeomorphism of the link complement, which might well change
the link itself.

/TD(I)




Order-preserving braids

Proposition

For each k > 2, the braid 0105 - - - 001 is order-preserving.



Order-preserving braids

Proposition

For each k > 2, the braid o107 - - - 001 is order-preserving.

disk twist

Figure: nth power of the disk twist converts the braided link of % to that
of 0102+ 0py101. (N =2 in this case.)
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Order-preserving braids

Let OP, denote the set of order-preserving braids in B,. For n > 3
we observe that OP, is NOT closed under multiplication.

Indeed we just saw that o10201 € OP,, and 01_2 € OP,, being a
pure braid. But their product is 0102051, which is not
order-preserving, being conjugate to o».

On the other hand OP,, contains the finite-index subgroup P, of
pure braids. We also have:

Proposition
The set OP,, generates B,,.

In other words, every braid is a product of order-preserving braids.
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There is a tensor product operation B, X B, = Bnip defined as

follows
# | ﬁ
1 2) 3)
Figure: (1) @ € B (2) B € B,. (3) a® B € Bmyn.
Theorem

a ® [ is order-preserving if and only if both « and (3 are
order-preserving.



Order-preserving braids

There is a tensor product operation B, X B, = Bnip defined as

follows
# | ﬁ
1 2) 3)
Figure: (1) @ € B (2) B € B,. (3) a® B € Bmyn.
Theorem

a ® [ is order-preserving if and only if both « and (3 are
order-preserving.

Corollary

Suppose n < k and 3 € B, C By under the natural inclusion.
Then 8 is OP in B, iff it is OP in By.
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Theorem

The unique closed minimal-volume orientable hyperbolic
3-manifold is the Weeks manifold, obtained by 5/1 and 5/2
surgery on the Whitehead link.
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Calegary and Dunfield showed that
Proposition
The fundamental group of the Weeks manifold is not left-orderable.

In fact they showed the stronger result that it is not circularly
orderable.
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Small hyperbolic 3-manifolds

Cao and Meyerhoff showed that there are two minimal examples in
the case of one cusp.

Theorem

An orientable hyperbolic 3-manifold with one cusp, of minimal
volume, is homeomorphic either to the figure 8 complement, or its
sibling which is obtainable from the Whitehead link by 5/1 surgery
on one component.

Proposition

The fundamental group of the figure 8 complement is bi-orderable.
That of its sibling is not bi-orderable.

Both these examples are realized as fibrations over the circle. For
the figure 8 complement, there are two positive eigenvalues. For
the sibling, the eigenvalues are both negative.
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Now we consider the case of two cusps. Agol proved the following

Theorem

A minimal volume 2-cusped orientable hyperbolic 3-manifold is
homeomorphic with either the Whitehead link complement or the
complement of the (—2,3,8) pretzel link.

Proposition

The fundamental group of the Whitehead link complement is
bi-orderable.

We'll use our braid ordering theory to argue that
Proposition

The fundamental group of the (—2,3,8) pretzel link complement is
NOT bi-orderable.
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Small hyperbolic 3-manifolds

The following shows that the 5-braid 3 = o3020304 has br(3)
equivalent to the (-2, 3, 8) pretzel link.

=

(4

Proposition

The braid 8 = 0f0203a4 is not order-preserving.

This can be shown by contradiction, as in the case of the Artin
generator.
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Recall that 0102030407 is order-preserving, and therefore its
conjugate 05020304 is also order-preserving. However 1020304
and 03020304 are not.



Small hyperbolic 3-manifolds

Consider the following links in S*:

O
DEEK

QL

3 “

Figure: (1) Gs. (2) Ga. (3) Gs. (4) Ge.

Yoshida proved:

Theorem

A minimal volume 4-cusped orientable hyperbolic 3-manifold is
homeomorphiic with S3\ Cy.
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Proposition
The fundamental group of S\ Cy is bi-orderable.

This follows since the complement of (4 is homeomorphic with the
complement of br(crl_zag), whose group is biorderable, since the
braid is a pure braid.

R

1) (@] 3)

Figure: S%\ br(oy203) is homeomorphic to 53\ C;. (1) br(a;203).
(2)(3) Links which are equivalent to .
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It has been conjectured that the complement of Cs has volume
smaller than all other 5-cusped hyperbolic orientable 3-manifolds.

Proposition
The fundamental group of S\ Cs is bi-orderable.

This follows because it is homeomorphic with S3 \ br(o;
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Similarly, S®\ Cs has bi-orderable fundamental group, as it is

homeomorphic to S\ br(o] 205 205 20, 2).
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manifold,” as it was called by Gordon and Wu. It is conjectured to
be the minimal volume 3-cusped orientable hyperbolic 3-manifold.
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We'll end with the case of 3 cusps. S3\ Gz is known as the “Magic
manifold,” as it was called by Gordon and Wu. It is conjectured to
be the minimal volume 3-cusped orientable hyperbolic 3-manifold.

Figure: S%\ br(cfo, ') is homeomorphic to S3\ Cs. (1) br(c20, ). (2)
Link which is equivalent to G;.
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