Strongly contracting elements in Garside groups

Bert Wiest, joint work with Matthieu Calvez

Université de Rennes 1 (France), Heriot Watt University, Edinburgh (UK)

Conference in memory of Patrick Dehornoy, September 2021

2006

2/21

2016

[A photo showing Patrick reading the bedtime story of Bert Wiest's 6 year old son]

Strongly contracting elements in Garside groups

- 1 Main result: strong contraction in Cay(Garside group)
- 2 A crash course on Garside theory
- 3 Proof of the main theorem (ideas)
- 4 Corollary: Loxodromic action on C_{AL} (Garside group)

Are pA axes in Mod(S) "like" hyperbolic geodesics?

[Duchin & Rafi, 2009] Axes of pA mapping classes in Cay(Mod(S)) are contracting, and hence Morse [Behrstock 2006]. Question Are they strongly contracting?

Answer [Rafi & Verberne, 2018] No! There exists a generating set \mathcal{K} and pA elements in $Mod(\mathbb{S}_5)$ whose axis in $Cay(Mod(\mathbb{S}_5),\mathcal{K})$ is not strongly contracting.

Are pA axes in Mod(S) "like" hyperbolic geodesics?

[Duchin & Rafi, 2009] Axes of pA mapping classes in Cay(Mod(S)) are contracting, and hence Morse [Behrstock 2006]. Question Are they strongly contracting?

Answer [Rafi & Verberne, 2018] No!

There exists a generating set \mathcal{K} and pA elements in $Mod(\mathbb{S}_5)$ whose axis in $Cay(Mod(\mathbb{S}_5), \mathcal{K})$ is not strongly contracting.

Theorem (Calvez & W, 2021)

Let $B_n =$ braid group on n strands, and $Z(B_n) = \langle \Delta^2 \rangle$ its center. In the Cayley graph of $B_n/Z(B_n)$ w.r.t. Garside's generating set, the axis of a pA element is strongly contracting.

More generally:

Let G be a Garside group of finite type with cyclic center. In the Cayley graph of G/Z(G) w.r.t. the Garside generating set, the axis of a Morse element is strongly contracting.

Morse

Definition (Morse)

- A quasi-geodesic γ in a metric space X is *Morse* if for every $\Lambda \geqslant 1$, $K \geqslant 0$, there is a number $M_{\Lambda,K}$ such that every (Λ,K) -quasi-geodesic with endpoints on γ remains in a $M_{\Lambda,K}$ -neighborhood of γ .
- An infinite order element g in a f.g. $G = \langle S \rangle$ is *Morse* if
 - (i) $n \mapsto g^n$ is a quasi-isometric embedding of \mathbb{Z} in Cay(G, S) and
 - (ii) the axis $\{g^n \mid n \in \mathbb{Z}\}$ is Morse.

Example

(1) Geodesics in \mathbb{H}^2 are Morse. (2) pAs in Mod(S) are Morse.

Remark

The Morse property is invariant under quasi-isometry $\/$ change of generating set.

Strong contraction

Definition (Strongly contracting)

Let (X, d) be a metric space, and $A \subset X$.

A is C-strongly contracting if for every ball B in X disjoint from A, $proj_A(B)$ has diameter $\leq C$ (universally bounded).

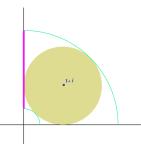
Here, $proj_A(x) = \{a \in A \mid \forall a' \in A, \ d(x, a) \leqslant d(x, a')\}.$

Example

Geodesics in \mathbb{H}^2 are $\ln(\frac{\sqrt{2}+1}{\sqrt{2}-1})$ -strongly contracting.

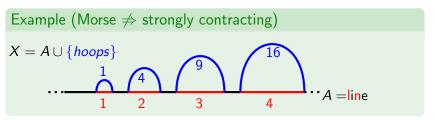
Attention

The strong contraction property is **not** invariant under quasi-isometry / change of generating set.



Morse vs. strongly contracting

Recall Strongly contracting \Rightarrow Morse



Morse vs. strongly contracting

Recall Strongly contracting ⇒ Morse

Example (Morse
$$\Rightarrow$$
 strongly contracting)
$$X = A \cup \{hoops\}$$

$$1$$

$$1$$

$$2$$

$$3$$

$$4$$

$$A = line$$

Theorem (Sultan 2014, Cashen 2020)

Suppose
$$A \subset X$$
 and X is $CAT(0)$. Then

A Morse \Rightarrow A strongly contracting

Thus our theorem ("In Garside, Morse \Rightarrow strongly contracting") says that Garside groups "behave a bit like" CAT(0). Evidence for **Famous conjecture** Braid groups are CAT(0)

Main result: strong contraction in Cay(Garside group)

2 A crash course on Garside theory

3 Proof of the main theorem (ideas)

4 Corollary: Loxodromic action on C_{AL} (Garside group)

Our preferred generators of B_n : Garside's generators

"Simple braids", a.k.a. "positive permutation braids": positive braids, any two strands crossing at most once

Permutations of $\{1, \ldots, n\}$

Our preferred generators of B_n : Garside's generators

"Simple braids", a.k.a. "positive permutation braids": positive braids, any two strands crossing at most once

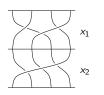
Permutations of $\{1, \ldots, n\}$

- Typical example
 Simple braid $x \in B_4$, permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$
- Very special example

 Half-twist $\Delta \iff \text{permutation } \begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$
- Property of Δ : "almost commutes" with all braids (and Δ^2 generates center $Z(B_n)$)

Left-weighting, left normal form

Example



The product $x_1 \cdot x_2$ is *not* left-weighted; the product $\widetilde{x}_1 \cdot \widetilde{x}_2$ is.

Theorem (Adjan, Thurston, Elrifai-Morton)

Every $x \in B_n$ has a unique representative of the form

$$\Delta^k \cdot x_1 \cdot \ldots \cdot x_\ell \quad (k \in \mathbb{Z}) \quad \text{ with } x_i \cdot x_{i+1} \text{ left-weighted } \forall i$$

Notation k = "infimum of x", $k + \ell =$ "supremum of x"

Motivation $\overset{[Garside]}{\leadsto}$ Solution to word and conjugacy pbm in B_n . **Similarly** Right-weighted normal form $x_1' \cdot \ldots \cdot x_\ell' \cdot \Delta^k$

Definition (The prefix ordering)

Partial ordering on B_n :

$$x \preccurlyeq y : \Leftrightarrow \exists \alpha \in B_n^+, \ x \cdot \alpha = y$$

Proposition (Garside)

On B_n^+ , the monoid of positive braids, this partial ordering is a lattice ordering: for $x, y \in B_n^+$

$$x \wedge y = g.c.d.(x, y)$$
 and $x \vee y = l.c.m.(x, y)$ exist

Definition (The prefix ordering)

Partial ordering on B_n :

$$x \leq y : \Leftrightarrow \exists \alpha \in B_n^+, x \cdot \alpha = y$$

Proposition (Garside)

On B_n^+ , the monoid of positive braids, this partial ordering is a lattice ordering: for $x,y\in B_n^+$

$$x \wedge y = g.c.d.(x, y)$$
 and $x \vee y = l.c.m.(x, y)$ exist

All this works more generally

"Definition" [Dehornoy-Paris] Garside group

A group G is Garside if similar combinatorial machinery works.

Example (Brieskorn-Saito, Deligne, Charney)

Irreducible Artin-Tits groups of spherical type $(A_n, B_n, D_n, E_6, E_7, E_8, F_4, H_3, H_4, I_2(m))$ are Garside.

Bestvina's graph (1999)

Definition (Bestvina's graph)

$$\mathcal{X} = Cay(G, S_{Garside})/\langle \Delta \rangle$$
:

- Vertices = Cosets $g\langle \Delta \rangle$ represented by g with $\inf(g) = 0$,
- Edge from $g\langle \Delta \rangle$ to $h\langle \Delta \rangle$ if there is $s \in S_{Gars}$ s.t. $gs \in h\langle \Delta \rangle$

Bestvina's graph (1999)

Definition (Bestvina's graph)

$$\mathcal{X} = Cay(G, S_{Garside})/\langle \Delta \rangle$$
:

- Vertices = Cosets $g\langle \Delta \rangle$ represented by g with $\inf(g) = 0$,
- Edge from $g\langle \Delta \rangle$ to $h\langle \Delta \rangle$ if there is $s \in S_{\it Gars}$ s.t. $\underline{g}s \in h\langle \Delta \rangle$

Convenient quasi-isometric model for $Cay(G/Z(G), S_{Garside})$:

recall $Z(G) = \langle \Delta^e \rangle$

Lemma

 $\mathcal{X} \stackrel{\textit{isom. embed.}}{\longleftrightarrow} Cay(G/Z(G), S_{\textit{Garside}})$ with e-dense image

Bestvina's graph (1999)

Definition (Bestvina's graph)

$$\mathcal{X} = Cay(G, S_{Garside})/\langle \Delta \rangle$$
:

- Vertices = Cosets $g(\Delta)$ represented by \underline{g} with $\inf(\underline{g}) = 0$,
- Edge from $g\langle \Delta \rangle$ to $h\langle \Delta \rangle$ if there is $s \in S_{\textit{Gars}}$ s.t. $\underline{g}s \in h\langle \Delta \rangle$

Convenient quasi-isometric model for $Cay(G/Z(G), S_{Garside})$: $recall Z(G) = \langle \Delta^e \rangle$

Lemma

$$\mathcal{X} \stackrel{\textit{isom. embed.}}{\longleftrightarrow} Cay(G/Z(G), S_{\textit{Garside}}) \ \textit{with e-dense image}$$

Want Axes of Morse elements in \mathcal{X} are strongly contracting.

Bestvina's graph

Proposition (Charney)

Garside normal forms give rise to geodesics in X.

Notation $\mathcal{NF}(g,h) = \text{preferred geod. between vertices } g \text{ and } h.$

Bestvina's graph

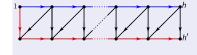
Proposition (Charney)

Garside normal forms give rise to geodesics in \mathcal{X} .

Notation $\mathcal{NF}(g,h) = \text{preferred geod. between vertices } g \text{ and } h.$

Proposition

[Charney 1992], [Dehornoy] If h, h' are adjacent, then $\mathcal{NF}(g,h)$ and $\mathcal{NF}(g,h')$ 1-fellow travel



Bestvina's graph

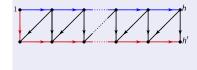
Proposition (Charney)

Garside normal forms give rise to geodesics in X.

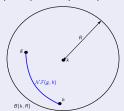
Notation $\mathcal{NF}(g, h) = \text{preferred geod. between vertices } g \text{ and } h.$

Proposition

[Charney 1992], [Dehornoy] If h, h' are adjacent, then $\mathcal{NF}(g, h)$ and $\mathcal{NF}(g, h')$ 1-fellow travel



Balls are <u>convex</u>: if $g, h \in B(k, R)$, then $\mathcal{NF}(g, h) \subset B(k, R)$.



Main result: strong contraction in Cay(Garside group)

2 A crash course on Garside theory

3 Proof of the main theorem (ideas)

4 Corollary: Loxodromic action on C_{AL} (Garside group)

Theorem (reminder)

If G is Garside (fin.type, $Z(G) \cong \mathbb{Z}$), then in $Cay(G/Z(G), S_{Gars})$, axis(g) Morse \Rightarrow axis(g) strongly contracting.

Theorem (reminder)

If G is Garside (fin.type, $Z(G) \cong \mathbb{Z}$), then in $Cay(G/Z(G), S_{Gars})$, axis(g) Morse \Rightarrow axis(g) strongly contracting.

Theorem (reminder)

If G is Garside (fin.type, $Z(G) \cong \mathbb{Z}$), then in $Cay(G/Z(G), S_{Gars})$, axis(g) Morse \Rightarrow axis(g) strongly contracting.

Difficulty

In order to prove strong contraction, one needs excellent control over *geodesics* (not just quasi-geodesics)

Theorem (reminder)

If G is Garside (fin.type, $Z(G) \cong \mathbb{Z}$), then in \mathcal{X} , axis(g) Morse \Rightarrow axis(g) strongly contracting.

Difficulty

In order to prove strong contraction, one needs excellent control over *geodesics* (not just quasi-geodesics)

In Garside groups, this is not a problem

If G is Garside, then in $\mathcal X$ we know a unique preferred geodesic between any pair of vertices (from the Garside normal form). Moreover, these geodesics have good geometric properties, e.g. fellow travelling.

A Garside-theoretical projection $\pi \colon\thinspace \mathcal{X} \to \mathsf{axis}(x)$

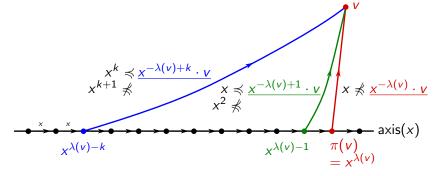
Definition (Projection to $axis(x) = \{x^k \langle \Delta \rangle \mid k \in \mathbb{Z}\} \subset \mathcal{X})$

Let $x \in G$ with $\inf(x) = 0$. Let v be a vertex of \mathcal{X} . Define

$$\lambda(v) = -\max\{k \in \mathbb{Z}, \; x \not\preccurlyeq rac{x^k \cdot v}{2}\} \quad ext{and} \quad \pi(v) = x^{\lambda(v)}\langle \Delta
angle$$

Lemma

Suppose moreover that x is right-rigid. Then this picture holds:



1 Main result: strong contraction in Cay(Garside group)

2 A crash course on Garside theory

3 Proof of the main theorem (ideas)

4 Corollary: Loxodromic action on C_{AL} (Garside group)

Braid groups B_n $\simeq Mod(\mathbb{D}_n)$ \subset Irred. spherical \simeq Garside groups with cyclic center

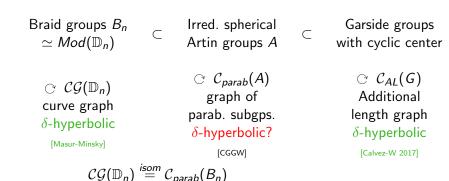
Braid groups B_n $\simeq Mod(\mathbb{D}_n)$ \subset Irred. spherical Artin groups A

Garside groups with cyclic center

 $\bigcirc \mathcal{CG}(\mathbb{D}_n)$ curve graph δ -hyperbolic

-nyperbolic [Masur-Minsky]

19/21



Additional length graph \mathcal{C}_{AL}

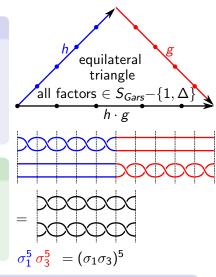
Definition (Calvez & W, 2017)

 $g \in G$ (Garside group) is absorbable if

- $\inf(g) = 0$ or $\sup(g) = 0$ and
- there is some $h \in G$ such that $\inf(hg) = \inf(h)$ and $\sup(hg) = \sup(h)$.

Example (in the braid group B_4)

 $g=\sigma_3^{50}$ is absorbable: with $h=\sigma_1^{50}$ we have $hg=(\sigma_1\sigma_3)^{50}$, so $\inf(hg)=0=\inf(h)$ and $\sup(hg)=50=\sup(h)$



Definition (Additional length graph - Calvez & W, 2017)

 $\mathcal{C}_{AL}(G) = Cay(G, \{ ext{Garside genrts} \} \cup \{ ext{absorbable elts} \})/\langle \Delta
angle$

Braid groups B_n $\simeq Mod(\mathbb{D}_n)$ \subset

Irred. spherical Artin groups A

Garside groups with cyclic center

 $\mathcal{C}_{AI}(G)$

Additional

 \bigcirc $\mathcal{CG}(\mathbb{D}_n)$ curve graph δ -hyperbolic

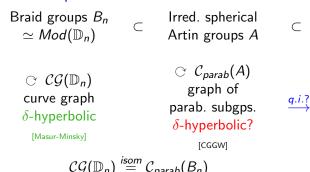
 $\mathcal{C}_{parab}(A)$ graph of parab. subgps. δ -hyperbolic?

length graph δ -hyperbolic

[Masur-Minsky]

 $\mathcal{CG}(\mathbb{D}_n) \stackrel{isom}{=} \mathcal{C}_{parab}(B_n)$

[Calvez-W 2017]



Garside groups with cyclic center

 \mathcal{C} $\mathcal{C}_{AL}(G)$ Additional length graph δ -hyperbolic

[Calvez-W 2017]

Braid groups
$$B_n$$
 $\simeq Mod(\mathbb{D}_n)$ \subset Irred. spherical $\simeq Mod(\mathbb{D}_n)$ \subset Artin groups A \subset Garside groups with cyclic center \subset $\mathcal{CG}(\mathbb{D}_n)$ graph of parab. subgps. δ -hyperbolic δ -hyperbolic? δ -hyperbolic? δ -hyperbolic? δ -hyperbolic δ -hyp

Corollary (Calvez & W, 2021)

- (1) Suppose G is a Garside group with cyclic center. If $g \in G$ is Morse, then its action on $C_{AL}(G)$ is loxodromic, WPD.
- (2) For braid groups B_n :
 - reducible & finite order braids act elliptically on $C_{AL}(B_n)$
 - pA braids act loxodromically, WPD on $C_{AL}(B_n)$.