Derived equivalences for skew-gentle algebras.

Claire Amiot, joint with Thomas Brüstle

Journées d'algèbre de Caen, Mars 2020

< ∃ →

э

Aim : combine the following two constructions.

- from Λ an algebra acted on by a group G, we can define a new algebra ΛG , and nice functors linking the representations of Λ and the representations of ΛG [Reiten-Riedtmann 85]
- O to Λ a gentle algebra, one can associate a marked surface with a collection of arcs [Opper-Plamondon-Schroll 2018], and algebraic properties of D^b(Λ) can be interpreted using the geometry [A-Plamondon-Schroll, Opper 2019].

Question

Let Λ and Λ' be gentle algebras with a certain action of a group G. Can we find a geometric interpretation of the fact that ΛG and $\Lambda' G$ have the same derived category ?

Notation : k field, G finite abelian group such that |G| invertible in k, Λ finite dimensional k-algebra with a G-action by automorphism.

We define ΛG as

$$\Lambda G = \Lambda \otimes \mathsf{k} G \text{ and } (\lambda \otimes g).(\lambda' \otimes g') = \lambda g(\lambda') \otimes gg'.$$

Since ΛG is a natural left Λ -module, we get adjoint functors

$$\mathcal{D}^{b}(\Lambda) \xrightarrow[Res]{-\bigotimes_{\Lambda} \Lambda G} \mathcal{D}^{b}(\Lambda G)$$

Let $\widehat{G} = \operatorname{Hom}(G, k^*)$ be the dual group. Then \widehat{G} acts on ΛG by

$$\chi.(\lambda \otimes g) = \chi(g)\lambda \otimes g$$

Proposition (RR'85)

The algebras $(\Lambda G)\widehat{G}$ and Λ are Morita equivalent.

Example

Let $\Lambda = k$ with trivial action of $G = \mathbb{Z}/2\mathbb{Z}$. Then $\Lambda G = k \times k$. The action of \widehat{G} exchanges the two copies of k. $\Lambda G \widehat{G} = \operatorname{Mat}_2(k)$. It is Morita equivalent to k.

Example

★ E ► ★ E ■ ● Q Q O

Definition

An object $T \in D^b(\Lambda)$ is called *tilting* if

 $\forall i \neq 0, \ \operatorname{Ext}^{i}(T, T) = 0 \quad \operatorname{and} \quad \operatorname{thick}(T) = \mathcal{D}^{b}(\Lambda).$

Theorem (Happel-Rickard)

Let Λ and Λ' be finite dimensional algebras. Then $\mathcal{D}^b(\Lambda) \simeq \mathcal{D}^b(\Lambda')$ if and only if there exists a tilting object $T \in \mathcal{D}^b(\Lambda)$ such that $\operatorname{End}(T) \simeq \Lambda$.

Fact : If $T \in \mathcal{D}^{b}(\Lambda)$ is *G*-invariant, then $\operatorname{End}(T)$ has a natural *G*-action.

프 에 에 프 에 드 프

Theorem (A-Brüstle)

Let Λ and Λ' be algebras with G-actions, then we have

$$\mathcal{D}^b(\Lambda) \underset{G}{\sim} \mathcal{D}^b(\Lambda') \Rightarrow \mathcal{D}^b(\Lambda G) \underset{\widehat{G}}{\sim} \mathcal{D}^b(\Lambda' G).$$

If T is tilting G-invariant, then $T \bigotimes_{\Lambda}^{\mathsf{L}} \Lambda G$ is tilting \widehat{G} -invariant.

Remark

$$\mathcal{D}^{b}(\Lambda G) \underset{\widehat{G}}{\sim} \mathcal{D}^{b}(\Lambda' G) \Rightarrow \mathcal{D}^{b}(\Lambda G \widehat{G}) \underset{G}{\sim} \mathcal{D}^{b}(\Lambda' G \widehat{G}) \Rightarrow \mathcal{D}^{b}(\Lambda) \sim \mathcal{D}^{b}(\Lambda').$$

But it is not clear that it implies $\mathcal{D}^b(\Lambda) \simeq \mathcal{D}^b(\Lambda')$.

ヨト・モート

Let (S, M, P) be a marked surface. $M \subset \partial S$. A dissection D on (S, M, P) is a maximal collection of non intersecting arcs with endpoints in M or P, that do not cut out a subsurface of S.

To (S, M, P, D), one can associate an algebra $\Lambda = kQ/I$ which is called **gentle** (cf Pierre-Guy Plamondon's talk).

Let $\sigma \in \text{Homeo}^+(S)$ of order 2 with finitely many fixed points such that $\sigma(M) = M$, $\sigma(P) = P$ and $\sigma(D) = D$. This defines a $\mathbb{Z}/2\mathbb{Z}$ -action on Λ .

Aim : Give a geometric model for the algebras ΛG .

★ 프 ► = 프

・ロト・雪ト・雪ト・雪 のくぐ

Skew-group algebras Application to gentle algebras

Example

ヨト ・ヨトー

< 17 →

Proposition (AB)

 ΛG is a skew-gentle algebra. All skew-gentle algebras are obtained in this way.

Skew-gentle algebras :[Geiss-de la Peña '95]. contains all gentle algebras, and D_n , \widetilde{D}_n quivers.

∃ ⊳

Skew-group algebras Application to gentle algebras

But, if A is skew-gentle, then the (S, M, D) is not unique.

Theorem (AB'19)

Let A and A' be two skew-gentle algebras, and Λ and Λ' the corresponding G-gentle algebras. Then the following are equivalent :

- **③** there exists a *G*-homeomorphism $(S, M, \eta) \rightarrow (S', M', \eta')$.

(《 문 》 문

Theorem (AB'19)

Let A and A' be two skew-gentle algebras. Then the following are equivalent :

- there exists a \widehat{G} -invariant tilting object T in $\mathcal{D}^{b}(A)$ with $\operatorname{End}(T) \simeq A'$;
- **2** there exists a homeomorphism $(\bar{S}, \bar{M}, \bar{\eta}) \rightarrow (\bar{S}', \bar{M}', \bar{\eta}')$.

Here \bar{S} is the orbifold S/σ .

★ 프 ▶ - 프

Skew-group algebras Application to gentle algebras

・ロン ・四 と ・ ヨン ・ ヨン …

æ