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Motivation

In 2009, David Hernandez and Bernard Leclerc introduced the idea
of a monoidal categorification of a cluster algebra.

They showed that the Grothendieck ring of certain subcategories of
finite-dimensional representations of a quantum affine algebra admits
the structure of a cluster algebra.

In doing this, they identified certain interesting families of irreducible
representations.

The cluster variables correspond to what is called a prime real
representation and the cluster monomials to irreducible tensor
products of such representations.
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Motivation

Our aim is to understand the character of the prime real
representations (coming from their study) for quantum Ân.

Regarded as a module for the quantized enveloping algebra of An,
the character can be written as sum of Schur polynomials.

I want to explain the connection between this decomposition and
Macdonald polynomials in type An.

I would also to explain the connections of this character formula with
Macdonald polynomials in type Bn.
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Regarded as a module for the quantized enveloping algebra of An,
the character can be written as sum of Schur polynomials.

I want to explain the connection between this decomposition and
Macdonald polynomials in type An.

I would also to explain the connections of this character formula with
Macdonald polynomials in type Bn.

Vyjayanthi Chari



Motivation

Our aim is to understand the character of the prime real
representations (coming from their study) for quantum Ân.
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The category F̂ q

Let Ûq be the quantized enveloping algebra of type Ân and F̂q the
category of finite-dimensional representations of Ûq.

This is a monoidal tensor category and the isomorphism classes of
irreducible objects are indexed by elements of a monoid P+ with
generators ωi,a, 1 ≤ i ≤ n and a ∈ C(q)×.

Suppose ω ∈ P+; then we can write it as a product

ω = ωi1,a1 · · ·ωik,ak , 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n

for some choice of parameters. It is clear that given ω there is an
associated partition whose Young diagram is given by k columns of
height i1, · · · , ik respectively.
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The category F q

So we have a map P+ to P+ (dominant integral weights or partitions
with at most n rows)

ω = ωi1,a1 · · ·ωik,ak  λ = ωi1 + · · ·+ ωik .

Different choices of parameters give non-isomorphic representations
associated to the same partition.

In the most generic case (ai/aj /∈ qZ) one knows that the character of
the irreducible representation is just the product of the characters of
[ωi,a] and these are known. They are just the characters of the
fundamental modules for sln+1.

But in the non-generic case this problem is hard and known, only in
certain special cases, for instance the evaluation modules V (λ) and
certain other cases which are usually suitable tensor products of
these.
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Prime Representations

The category F̂q is a tensor category; a prime irreducible object is
just one that cannot be written (in a non-trivial way) as a tensor
product of objects of F̂q.

Obviously, from the point of view of characters of an irreducible
representation, it would be enough to know the character of the
prime ones.

But the problem, of even finding large classes of examples of prime
objects, leave alone classifying them, seems very hard.

And this is where the approach through monoidal categorification
has been very helpful.
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HL modules

In the case of An, the approach of H-L (in their 2009 paper),
identifies the following class of prime irreducible representations.

thet are given by Young diagrams of the following kind:

• a single column; the associated module is the irreducible module
with index ωi,a; usually part of the initial seed,

• two columns, both of the same height say i; “frozen variables”; the
associated HL-module is the irreducible module with index ωi,aωi,aq2 ,

• all the columns have distinct heights. “unfrozen cluster variables”.
The associated module is indexed by ωi1,a1 · · ·ωik,ak with
i1 < · · · < ik and a1, · · · , ak depend on the difference of column
heights as follows:

a1 = 1, a2 = qi2−i1+2, a3 = q−i3+2i2−i1 · · · ....
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HL modules

In all case the corresponding modules are prime.

And we shall be essentially concerned with these prime modules.

So from now on we can forget about the parameters and just index
these modules by these special kinds of partitions.

The character in the case when the partition has one or two columns
is easy. It is just the character of the corresponding irreducible
module for sln+1.
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HL modules

In the case when the partition has three or more columns, one knows
that the character of the corresponding prime module,

ch V̂q(λ) = sλ +
∑
µ<λ

rµλsµ, rµλ ∈ Z+

and rµλ is definitely non-zero for some µ < λ. This is forced by the
choice of parameters.

Clearly, chV̂q(λ) define a linearly independent family of symmetric
functions.

So my goal is to explain how these characters arise as specializations
at q = 1 of a family of polynomials Gλ(z,q) which in turn are
defined in terms of specialized Macdonald polynomials, Pλ(z,q, 0).
Since q is being used for the quantum parameter, I am using q for
the parameter which shows up in Macdonald theory!
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HL modules

Actually, we shall do more, we shall define these polynomials for all
partitions λ.

These polynomials will give the character of the prime HL modules
tensored with arbitrary numbers of frozen variables as follows.

Example
λ = 4 ≥ 2 ≥ 1 would correspond to (ω1,1ω1,q2)⊗ (ω2,1ω3,q3) (frozen
tensor prime) and Gλ(z, 1) will give the character of this module.

λ = 3 ≥ 2 ≥ 2 ≥ 2 ≥ 1 would correspond to the prime module given
by ω1,1ω4.q5ω5,q2 .
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The polynomials Gλ(z,q)

Fix a set of indeterminates z = (z1, · · · , zn+1) and q. Let Pλ(z,q, 0)
be the specialized Macdonald polynomial associated to λ.

Suppose that we have a collection of polynomials pµλ(q) ∈ Z+[q]
where λ, µ vary over all partitions, and satisfy:

pλλ = 1, pµλ = 0, µ � λ.

Then we can define polynomials Gλ(z,q) (depending on pµλ(q))
recursively, by requiring

P0(z,q, 0) = G0(z,q) = 1, Pωi(z,q, 0) = Gωi(z,q),

Pλ(z,q, 0) =
∑
µ

pµλ(q)Gµ(z,q).

Of course, in general the Gλ(z,q) are not going to be the characters
of anything.
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The choice of pµλ(q)

I now want to explain that there is a particular choice of pµλ(q) so
that the polynomials Gµ(z,q) defined by these formulae,

P0(z,q, 0) = G0(z,q) = 1, Pωi(z,q, 0) = Gωi(z,q, 0),

Pλ(z,q, 0) =
∑
µ

pµλ(q)Gµ(z,q),

are Schur positive.

This means that we can write,

Gµ(z,q) =
∑
ν

ηνµ(q)sν(z), ηνµ ∈ Z+[q].

We will see that at q = 1 they give the character of the HL-module.
And that they are connected with Macdonald polynomials associated
to non-simply laced root systems.

Vyjayanthi Chari



The choice of pµλ(q)

I now want to explain that there is a particular choice of pµλ(q) so
that the polynomials Gµ(z,q) defined by these formulae,

P0(z,q, 0) = G0(z,q) = 1, Pωi(z,q, 0) = Gωi(z,q, 0),

Pλ(z,q, 0) =
∑
µ

pµλ(q)Gµ(z,q),

are Schur positive. This means that we can write,

Gµ(z,q) =
∑
ν

ηνµ(q)sν(z), ηνµ ∈ Z+[q].

We will see that at q = 1 they give the character of the HL-module.
And that they are connected with Macdonald polynomials associated
to non-simply laced root systems.

Vyjayanthi Chari



The choice of pµλ(q)

I now want to explain that there is a particular choice of pµλ(q) so
that the polynomials Gµ(z,q) defined by these formulae,

P0(z,q, 0) = G0(z,q) = 1, Pωi(z,q, 0) = Gωi(z,q, 0),

Pλ(z,q, 0) =
∑
µ

pµλ(q)Gµ(z,q),

are Schur positive. This means that we can write,

Gµ(z,q) =
∑
ν

ηνµ(q)sν(z), ηνµ ∈ Z+[q].

We will see that at q = 1 they give the character of the HL-module.
And that they are connected with Macdonald polynomials associated
to non-simply laced root systems.

Vyjayanthi Chari



The polynomials pµλ(q).

We need some notation and preliminary definitions.

Given an arbitrary partition λ let λ1 be the partition obtained from
the Young diagram of λ by removing all pairs of columns of equal
height.

Let λ0 be ‘half’ of what is left over’.

You could think of this as the unfrozen and parts of the partition.
In our examples,

Example
λ = 4 ≥ 2 ≥ 1, λ0 = 1, λ1 = 2 ≥ 2 ≥ 1.

λ = 3 ≥ 2 ≥ 2 ≥ 2 ≥ 1 we would have λ0 is the empty partition and
λ1 = λ.

From now on we will use this notation freely.
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The polynomials pµλ(q)

Given λ, µ ∈ P+, set

pµλ(q) = q
1
2

(λ+µ1, λ−µ)
n∏
j=1

[
(λ− µ, ωj) + (µ0, αj)

(λ− µ, ωj)

]
q

.

Our convention is that
[
n

m

]
q

= if m < 0 or m > n.

Notice that pλλ = 1, pµλ = 0 µ � λ. Moreover,

(λ+µ1, λ−µ) = (λ−µ, λ−µ)+2(µ−µ0, λ−µ) ∈ 2Z+, if λ−µ ∈ Q+,

and in particular pµλ ∈ Z+[q].

Vyjayanthi Chari



The polynomials pµλ(q)

Given λ, µ ∈ P+, set

pµλ(q) = q
1
2

(λ+µ1, λ−µ)
n∏
j=1

[
(λ− µ, ωj) + (µ0, αj)

(λ− µ, ωj)

]
q

.

Our convention is that
[
n

m

]
q

= if m < 0 or m > n.

Notice that pλλ = 1, pµλ = 0 µ � λ. Moreover,

(λ+µ1, λ−µ) = (λ−µ, λ−µ)+2(µ−µ0, λ−µ) ∈ 2Z+, if λ−µ ∈ Q+,

and in particular pµλ ∈ Z+[q].

Vyjayanthi Chari



The polynomials pµλ(q)

Given λ, µ ∈ P+, set

pµλ(q) = q
1
2

(λ+µ1, λ−µ)
n∏
j=1

[
(λ− µ, ωj) + (µ0, αj)

(λ− µ, ωj)

]
q

.

Our convention is that
[
n

m

]
q

= if m < 0 or m > n.

Notice that pλλ = 1, pµλ = 0 µ � λ. Moreover,

(λ+µ1, λ−µ) = (λ−µ, λ−µ)+2(µ−µ0, λ−µ) ∈ 2Z+, if λ−µ ∈ Q+,

and in particular pµλ ∈ Z+[q].

Vyjayanthi Chari



Example in sl3.

Suppose that g = sl3. If λ = ω1 + ω2 and µ = 0 we have
λ− µ = α1 + α2 and so we get,

p0
ω1+ω2

= q

[
(α1 + α2, ω1)

(α1 + α2, ω1)

]
q

[
(α1 + α2, ω2)

(α1 + α2, ω2)

]
q

= q.

Moreover,

Pω1+ω2 = sω1+ω2 + q = Gω1+ω2 + q =⇒ Gω1+ω2 = sω1+ω2 .

This is exactly what one expects in the HL-module in this case since
the choice of parameters guarantees that its character is a Schur
polynomial.
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Example of Gλ in sl4

The most interesting HL-module in sl4 is associated with
ω1 + ω2 + ω3; namely ω1,1ω2,q3ω3,1. After a small calculation we find
that:

Gω1+ω2+ω3 = sω1+ω2+ω3 + qsω2 .

At q = 1 one can check using elementary representation theory that
this is the character of the HL-module.

Already for sl5 this probelem becomes hard to do by brute force.
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The main results

Theorem[Biswal- C-Shereen-Wand]

With the preceding choice of pµλ, the polynomials Gλ(z,q) are Schur
positive and give the character of a level two Demazure module of in
a highest weight representation of the affine Lie algebra.

Theorem[Brito-C-Moura]
The character of the HL-module associated to a a partition is the
same as the (ungraded) character of a level two Demazure module of
in a highest weight representation of the affine Lie algebra.

Putting the two together we get:

The characters of the HL-modules are given by Gλ(z, 1).
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But why?

Many things are obviously opaque at this point.

• How did we come up with the polynomials pµλ(q).

• Why do the Macdonald polynomials show up?

•Why is there a connection between the HL-modules and the
Demazure modules ?

In the rest of the talk I want to give some explanation for these
things.
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Macdonald polynomials and level one modules.

Let g be an arbitrary simple Lie algebra and ĝ the corresponding
untwisted affine Lie algebra. It has a one-dimensional center spanned
by an element c and contains a scaling element d which essentially
defines a grading and g ↪→ ĝ.

Let b̂ be a Borel subalgebra and let p̂ the standard maximal
parabolic subalgebra containing b̂. It can be realized as

p̂ = g⊗ C[t]⊕ Cc⊕ Cd.

The commutator subalgebra of p̂ is g[t] which is called the current
algebra of g.

Let ĥ ⊂ b̂ be the Cartan subalgebra, it can be written as

ĥ = h⊕ Cc⊕ Cd

where h is a Cartan subalgebra of g. Let W ≤ Ŵ be the finite and
affine Weyl group.
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ĥ = h⊕ Cc⊕ Cd

where h is a Cartan subalgebra of g. Let W ≤ Ŵ be the finite and
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untwisted affine Lie algebra. It has a one-dimensional center spanned
by an element c and contains a scaling element d which essentially
defines a grading and g ↪→ ĝ.
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Demazure modules

Let P̂+ be the set of affine dominant integral weights with Λ0, · · · ,Λn
being the affine fundamental weights, here n is the rank of g,

Λ0|h = 0 = Λ0(d), Λ0(c) = 1, Λi = ωi + ωi(hθ)Λ0

Let V (Λ) be the irreducible highest weight module associated to
Λ ∈ P̂+ and let vΛ be the highest weight vector.

Then one knows that V (Λ) is a direct sum of eigenspaces with
respect to the action of ĥ ⊂ b̂; c acts as the scalar Λ(c) also known as
the level of the representation. The eigenvalues of d are bounded
above by Λ(d) and the eigenspaces are finite-dimensional.

For all w ∈ Ŵ we have dimV (Λ)wΛ = 1 and the Demazure module
Vw(Λ) is the b̂-module generated by this weight space. It is easily
seen that it is finite-dimensional.
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A result of Sanderson and Ion

Let Λ ∈ P̂+ and w ∈ Ŵ be chosen so that the restriction of wΛ to h
is in −P+.

Then, Vw(Λ) is a module for p̂ or equivalently a graded module for
g[t].

Theorem[Sanderson, Ion
Assume that g is of type A,D,E. Let w0 ∈W be the longest
element and w ∈ Ŵ be such that λ = −w0wΛ0|h ∈ P+. Then the
character of the g-stable Demazure module Vw0w(Λ0) is Pλ(z, q, 0).

There are two immediate questions which arise from this theorem.

Is there an analogous result for the non-simply laced types?

What can one say about the character of other g-stable Demazure
modules.
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Connection with Quantum Affine Algebras

It was known since the turn of the century when, Sanderson (in type
A) and Ion (in type D,E) proved their result, that the Macdonald
polynomial was too big to be the character of a Demazure module in
the non-simply laced cases.

So the question then becomes: is the polynomial Pλ(z,q, 0) the
character of some module for p̂.

At about the same time Pressley and I were studying a particular
family of irreducible modules for the quantum affine algebra.

We called them Weyl modules, but they are also known as standard
modules in the literature.

They are just a tensor product of fundamental modules
[ωi1,qr1 ]⊗ · · · ⊗ [ωik,qrk ] taken in a suitable order. Their character
only depends on the associated partition λ =

∑k
j=1 ωij .
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The connection with Quantum Affine Algebras

In the classical (q → 1) limit these modules become reducible, but
indecomposable (finite-dimensional) modules for the affine Lie
algebra. And they have very nice universal properties.

They are not graded modules but this can be fixed, by passing to a
suitable graded limit. and they become graded modules for the
current algebra g[t].

Theorem [CP][C-Loktev],[Fourier-Littelmann]

If g is of type A,D,E the local Weyl module Wloc(λ) is isomorphic
to Vw0w(Λ), Λ ∈ P̂+, Λ(c) = 1 and w0w|h = −λ. In particular the
character of the corresponding standard module for the quantum
affine algebra is given by the specialized Macdonald polynomial
P−w0wλ(z, 1, 0).
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The non-simply laced case.

In 2015, Ion and I proved the following.

Theorem[C-Ion]

The Macdonald polynomial Pλ(z,q, 0) is the graded character of the
local Weyl module in all types.

This work relied on some previous work of K. Naoi about which I
will say more in a bit.

This theorem shows that the connection with quantum affine
alegbras is really crucial.; it was what motivated the definition of the
local Weyl modules for the current algebra.

But this theorem does not a tell us the character of the Demazure
module is in the non-simply laced case.
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A result of Naoi

To get to the character of the Demazure module, we need the
following.

Theorem[Naoi]

Suppose that g is of type B,C, F,G. Then Wloc(λ) has a decreasing
filtration:

Wloc(λ) ⊃W1 ⊃W2 ⊃ Wr = {0}

and
Wj/Wj+1

∼= V−w0wj (Λ)

for some Λ ∈ P̂+ with Λ(c) = 1.

Such a filtration is called a level one Demazure flag. The only time
r = 1 is when λ takes values 0, 1 on all the short simple roots.
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A result of Naoi

It can be proved that V−w0w(Λ) actually depends only on the pair
(−w0wΛ|h,Λ(c)). So it is convenient to denote these modules by
D(`, λ), where −w0wΛ = λ and ` = Λ(c).

As a consequence of C-Ion and Naoi’s result, we can write

Pλ(z,q, 0) =
∑
µ∈P

[Wloc(λ) : D(1, µ)]qchgrD(1, µ),

where
[Wloc(λ) : D(1, µ)]q = 0

unless µ ≤ λ and [Wloc(λ) : D(1, λ)]q = 1.
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A reduction to type A

Naoi related the polynomial [Wloc(λ) : D(1, µ)]q to a level two
Demazure flag in type A.

The set of short simple roots in a Lie algebra g of type Bn, Cn, F4, G2

generate a subalgebra of type A1, An−1, A2, A1 respectively.

Given λ ∈ P+
g let λs be the restriction of λ to the short simple roots,

in particular λs ∈ P+
slr
.

Theorem[Naoi]
For g of type B,C, F,G we have

[Wloc(λ) : D(1, µ)]g = δλ−λs,µ−µs [Wloc(λs) : D(d, µs)]slr ,

where d = 3 if g is of type G2 and d = 2 otherwise.
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Level two Demazure modules for An

So, in view of Naoi’s result, one really wants to know the
polynomials [Wloc(λ) : D(2, µ)]q for An, in one words using
Sanderson, we can write

Pλ(z,q, 0) = chgrWloc(λ) =
∑

[Wloc(λ) : D(2, µ)]qchgrD(2, µ).

Compare it with

Pλ(z,q, 0) =
∑
µ

pµλ(q)Gµ(z,q).

So the Schur positivity of Gµ(z,q) follows by showing:

For µ ∈ P+ we have

Gµ(z,q) = chgrD(2, µ), pµλ = [Wloc(λ) : D(2, µ)]q.
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The explicit formula for pµλ

Recall that we had

pµλ(q) = q
1
2

(λ+µ1, λ−µ)
n∏
j=1

[
(λ− µ, ωj) + (µ0, αj)

(λ− µ, ωj)

]
q

.

Our convention is that
[
n

m

]
q

= if m < 0 or m > n.

But I have no good reason for this formula! We showed that the
existence of such a formula forced [Wloc(λ) : D(2, µ)]q to satisfy
certain recursive relations We guessed the closed formula by using
Sage. And eventually succeeded in proving it.
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Back to HL-modules

Suppose we take one of irreducible modules arising from the
monoidal categorification in the 2009 paper of HL.

Since classical limits of representations of quantum affine algebra
have had interesting consequences, it seemed natural to see what
these were for the HL-modules.

This was done with Brito and Moura. We could show that the
graded q → 1 limit was a level two Demazure module.

The character of the quantum module does not change on passing to
the classical limit.

And so: the character of the HL-module associated to a partition λ
is Gλ(z, 1, 0).
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Thank you for your attention.

Vyjayanthi Chari


