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Complex reflection groups and their parabolic subgroups
Classification of complex reflection groups
Braid groups and Hecke algebras of complex reflection groups

@ V finite dimensional complex vector space
e W =(R) C GL(V) (finite) complex reflection group
R={re W |codimV" =1} set of reflections

Definition
A parabolic subgroup of W is the subgroup of elements of W which act
trivially on a subspace of V.
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Complex reflection groups and their parabolic subgroups

@ V finite dimensional complex vector space
e W =(R) C GL(V) (finite) complex reflection group
R={re W |codimV" =1} set of reflections

Definition
A parabolic subgroup of W is the subgroup of elements of W which act
trivially on a subspace of V.

Theorem (Steinberg)

Let V' be a subspace of V. Then W/ := Cy/(V')=(re R| V" D> V).
In particular, (W', V) is a reflection group.
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@ V finite dimensional complex vector space
e W =(R) C GL(V) (finite) complex reflection group
R={re W |codimV" =1} set of reflections

Definition
A parabolic subgroup of W is the subgroup of elements of W which act
trivially on a subspace of V.

Theorem (Steinberg)

Let V' be a subspace of V. Then W/ := Cy/(V')=(re R| V" D> V).
In particular, (W', V) is a reflection group.

A :={V"| r € R} hyperplane arrangement (reflection hyperplanes),
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Complex reflection groups and their parabolic subgroups

@ V finite dimensional complex vector space
e W =(R) C GL(V) (finite) complex reflection group
R={re W |codimV" =1} set of reflections

Definition
A parabolic subgroup of W is the subgroup of elements of W which act
trivially on a subspace of V.

Theorem (Steinberg)

Let V' be a subspace of V. Then W/ := Cy/(V')=(re R| V" D> V).
In particular, (W', V) is a reflection group.

A :={V"| r € R} hyperplane arrangement (reflection hyperplanes),
A>5H—= Wy = Cw(H) = <rH> ~ Z/HHZ,
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Complex reflection groups and their parabolic subgroups

@ V finite dimensional complex vector space
e W =(R) C GL(V) (finite) complex reflection group
R={re W |codimV" =1} set of reflections

Definition
A parabolic subgroup of W is the subgroup of elements of W which act
trivially on a subspace of V.

Theorem (Steinberg)

Let V' be a subspace of V. Then W/ := Cy/(V')=(re R| V" D> V).
In particular, (W', V) is a reflection group.

A :={V"| r € R} hyperplane arrangement (reflection hyperplanes),
A>5H—= Wy = Cw(H) = <rH> ~ Z/HHZ,
ry = distinguished reflection, of determinant 2™/
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Complex reflection groups and their parabolic subgroups

@ V finite dimensional complex vector space
e W =(R) C GL(V) (finite) complex reflection group
R={re W |codimV" =1} set of reflections

Definition
A parabolic subgroup of W is the subgroup of elements of W which act
trivially on a subspace of V.

Theorem (Steinberg)

Let V' be a subspace of V. Then W/ := Cy/(V')=(re R| V" D> V).
In particular, (W', V) is a reflection group.

A :={V"| r € R} hyperplane arrangement (reflection hyperplanes),
A>5H—= Wy = Cw(H) = <rH> ~ Z/HHZ,
ry = distinguished reflection, of determinant 2™/

Conjugacy classes of reflections: ry j == rﬁ He[A/W],1<j<ny-—1.
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Classification of complex reflection groups

Theorem (Shephard-Todd)
If (W, V) is an irreducible complex reflection group, then either:

e W ~ G(de, e, n), the group of n x n monomial matrices whose
non-zero entries lie in puge and have product in py;
(particular case G(1, 1, n) = Sp has rank n — 1)

o W e {Gy,..., Gz} is one of 34 exceptional complex reflection
groups.
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Theorem (Shephard-Todd)

If (W, V) is an irreducible complex reflection group, then either:

e W ~ G(de, e, n), the group of n x n monomial matrices whose
non-zero entries lie in puge and have product in py;

(particular case G(1, 1, n) = Sp has rank n — 1)

o W e {Gy,..., Gz} is one of 34 exceptional complex reflection
groups.
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Classification of complex reflection groups
Theorem (Shephard-Todd)

If (W, V) is an irreducible complex reflection group, then either:

e W ~ G(de, e, n), the group of n x n monomial matrices whose

non-zero entries lie in puge and have product in py;
(particular case G(1, 1, n) = Sp has rank n — 1)

o W e {Gy,..., Gz} is one of 34 exceptional complex reflection
groups.
o
Gy = 3—@t:<,t\t:tt, =t'=1)
v w

7t7 ,V, W|
t t = uts = tsu,

Gz = = V =VUu,sw = ws,vw = wv,

Vs = vsv, tvt = vtv,twt = wtw, wuw = uwlu,
§ ? :t2: :VZ:W2:]_
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Vs = V\ | H,  Pwi=m(V™%,v),  Bw:=m(V*/W, 7o)
HeA

1— Py — By —W-—1

Bw is generated by “generators of the monodromy” oy which lift the
distinguished reflections ry.
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Braid groups of complex reflection groups

Ve .= v\ U H, Py = m (V™ w), By = m1(V™8 /W, V)
HeA

1— Py — By —W—1

By is generated by “generators of the monodromy” oy which lift the
distinguished reflections ry.

Bw has an "“Artin-like” presentation such that one obtains a presentation
of W by adding the order relations (Broué-Malle-Rouquier,
Bessis-Michel, Bessis).
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Hecke algebras of complex reflection groups

To get the Hecke algebra JH of the complex reflection group W from the
group algebra of its braid group, we deform the order relations:

(O’H — UH,O) N ((TH — UH,"H—l) =0

over the ring Z[u*'] = Z[u};%], for H € [A/W].
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To get the Hecke algebra JH of the complex reflection group W from the
group algebra of its braid group, we deform the order relations:

(O’H — UH,O) N (O’H — UH,"H—l) =0
over the ring Z[u™'] = Z[u%], for H € [A/W].

Conjectures
@ The algebra K is a free Z[u™!]-module of rank |W/|.
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Hecke algebras of complex reflection groups

To get the Hecke algebra JH of the complex reflection group W from the
group algebra of its braid group, we deform the order relations:

(O’H — UH,O) N (O’H — ”H,nH—l) =0

over the ring Z[u™'] = Z[u%], for H € [A/W].

Conjectures

@ The algebra K is a free Z[u™!]-module of rank |W/|.
@ Moreover, there is a linear form t : 3 — Z[u™!] such that:

e tis a symmetrizing form on I, i.e., t(hh') = t(h'h) for all h, " € K,
and £ : H 5 Hom(H, Z[u*']), h— (' — t(hh')).
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Our criterion for complex reflection groups

Hecke algebras of complex reflection groups

To get the Hecke algebra JH of the complex reflection group W from the
group algebra of its braid group, we deform the order relations:

(O’H — UH,O) N (O’H — ”H,nH—l) =0

over the ring Z[u™'] = Z[u%], for H € [A/W].

Conjectures

@ The algebra K is a free Z[u™!]-module of rank |W/|.
@ Moreover, there is a linear form t : 3 — Z[u™!] such that:
e tis a symmetrizing form on I, i.e., t(hh') = t(h'h) for all h, " € K,
and £ : H 5 Hom(3(, Z[u™']), h s (h' — t(hh')).
o H specializes via uyy j — e2™/™ to the canonical symmetrizing form
(coefficient of 1) on the group algebra of W.
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Hecke algebras of complex reflection groups

To get the Hecke algebra JH of the complex reflection group W from the
group algebra of its braid group, we deform the order relations:

(O’H — UH,O) N (O’H — UH,"H—l) =0

over the ring Z[u*!] = Z[u], for H € [A/W].

J

Conjectures
@ The algebra K is a free Z[u™!]-module of rank |W/|.
@ Moreover, there is a linear form t : 3 — Z[u™!] such that:
e tis a symmetrizing form on I, i.e., t(hh') = t(h'h) for all h, " € K,
and £: H 5 Hom(3(, Z[u®"]), h— (K — t(hh')).
o H specializes via uyy j — e2™/™ to the canonical symmetrizing form

(coefficient of 1) on the group algebra of W.
e For (o — ™) = simultaneous inversion of the indeterminates,

Vbe B, t(bl) = tt((b:)), where 7 = (t — ve’™) € Z(P).
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e for any H € A, choose ayy € V* such that ker(ay) = H
(may do so W-equivariantly)

o forany r € R, let a, := ayr
e c:R—C, r— ¢, such that ¢, = ¢,-1,,, for any w e W



Complex reflections groups, braid groups, Hecke algebras Definition

Rational Cherednik algebras Standard modules
Etingof’s criterion for Coxeter groups Grading, c-order, highest weight category
Our criterion for complex reflection groups Basic question: support of simple modules

Definition of rational Cherednik algebras

e for any H € A, choose ay € V* such that ker(ay) = H
(may do so W-equivariantly)

e forany r € R, let a, := ayyr
@ c:R—C, r— ¢, such that ¢, = ¢,,-1,, for any w € W

Definition
The rational Cherednik algebra H.(W, V) is the subalgebra of

Endc(C[V]) generated by the group algebra CW, the polynomial algebra
C[V] acting by multiplication, and the Dunkl operators

y(F) = 8,(F) — Zc,(a,,y)f_Tr(f), for y € V and f € C[V].

rer r

They commute! They generate a polynomial algebra C[V*].
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Definition of rational Cherednik algebras

e for any H € A, choose ay € V* such that ker(ay) = H
(may do so W-equivariantly)

o forany r € R, let a, := ayr
e c: R—C, r— ¢, such that ¢, = ¢,,-1,, forany w e W

Definition
The rational Cherednik algebra H.(W, V) is the subalgebra of

Endc(C[V]) generated by the group algebra CW, the polynomial algebra
C[V] acting by multiplication, and the Dunkl operators

y(f)=0,(f) — E c,(a,,y>7f — r(f), for y € V and f € C[V].
72
rer

They commute! They generate a polynomial algebra C[V*].

We may write ¢ = (cp j).
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Definition of rational Cherednik algebras

e for any H € A, choose ay € V* such that ker(ay) = H
(may do so W-equivariantly)

e forany r € R, let o, := ayr

@ c:R—C, r— ¢, such that ¢, = ¢,,-1,, for any w € W

Definition
The rational Cherednik algebra H.(W, V) is the subalgebra of

Endc(C[V]) generated by the group algebra CW, the polynomial algebra
C[V] acting by multiplication, and the Dunkl operators

y(f)=0,(f)— Z lary) Z CHxNHeH (f), for y € V and f € C[V].
Hea M,

They commute! They generate a polynomial algebra C[V*].

Better: cuy = 5t Y, ey, & (1 — x(r)), H € [A/W], x € Wy \ {1}.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module




C[V] ® CW @ C[V*] = H.(W, V) as vector spaces.
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Rational Cherednik aloet Standard
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Standard modules

Theorem (Etingof-Ginzburg: PBW for symplectic reflection algebras)
C[V]® CW @ C[V*] = H.(W, V) as vector spaces.

Definition (Category O.)
Category O, = O(W, V) is the full subcategory of H.(W, V)-mod
consisting of modules that are

@ locally nilpotent for the action of the Dunkl operators V

o finitely generated over the polynomial subalgebra C[V] = S(V*).
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Standard modules

Theorem (Etingof-Ginzburg: PBW for symplectic reflection algebras)
C[V]® CW @ C[V*] = H.(W, V) as vector spaces.

Definition (Category O.)
Category O, = O(W, V) is the full subcategory of H.(W, V)-mod
consisting of modules that are

@ locally nilpotent for the action of the Dunkl operators V

o finitely generated over the polynomial subalgebra C[V] = S(V*).

Definition (Standard modules)
The standard module corresponding to E € Irr CW is

A(E) == Ho(W, V) ®clv+xcw E (=~ C[V] ®c E over CW x C[V]),

where Dunkl operators V act by 0 on E.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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@ It is induced by the Euler element:

eu = Z Xj%: Z xjyj—i-Zc,(l—r)eHc(W,V),

1<j<n ) 1<j<n rer

where (x1,...,x,) and (y1,...,y,) are dual bases of V* and V.



o degV* =1 degCW =0, degV =—1.
@ It is induced by the Euler element:

eu = Z Xj%: Z xjyj—i-Zc,(l—r)eHc(W,V),

1<j<n ) 1<j<n rer

where (x1,...,x,) and (y1,...,y,) are dual bases of V* and V.
@ eu acts locally finitely on each M € O, hence M € O, is C-graded.



o degV* =1 degCW =0, degV =—1.
@ It is induced by the Euler element:

0
eu = Z xja—XJ = Z xjyj+2c,(1 —r) € H (W, V),
1<j<n 1<j<n reR
where (x1,...,x,) and (y1,...,y,) are dual bases of V* and V.
@ eu acts locally finitely on each M € O, hence M € O, is C-graded.

ez = Zc,(l —r) € Z(CW) acts by a scalar cg on E € lrr CW.
rerR



Complex reflections groups, braid groups, Hecke algebras Definition

Rational Cherednik algebras Standard modules
Etingof’s criterion for Coxeter groups Grading, c-order, highest weight category
Our criterion for complex reflection groups Basic question: support of simple modules

Grading

@ degV* =1 degCW =0, degV =-1.
@ It is induced by the Euler element:
0
eu = Z Xjaixj = Z ijj—|—Zc,(1 —r) € H(W,V),
1<j<n 1<j<n rer

where (x1,...,x,) and (y1,...,yn) are dual bases of V* and V.
@ eu acts locally finitely on each M € O, hence M € O is C-graded.
e z:= Zc,(l —r) € Z(CW) acts by a scalar cg on E € lrr CW.

rer
@ euacts on A (E)g = S4(V*)® E by d + cg.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Grading

@ degV* =1 degCW =0, degV =-1.
@ It is induced by the Euler element:

eu = Z xj%: Z ijj—i—Zc,(l—r)eHc(W,V),

1<j<n J o 1<j<n rerR

where (x1,...,x,) and (y1,...,yn) are dual bases of V* and V.

eu acts locally finitely on each M € O, hence M € O, is C-graded.

z:= Zcr(l —r) € Z(CW) acts by a scalar cg on E € lrr CW.
rer
eu acts on A(E)g = Sa(V*)® E by d + ck.

A (E) — Lc(E) unique simple quotient (get all simples in O.)

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module



Complex reflections groups, braid groups, Hecke algebras Definition

Rational Cherednik algebras Standard modules
Etingof’s criterion for Coxeter groups Grading, c-order, highest weight category
Our criterion for complex reflection groups Basic question: support of simple modules

Grading

degV* =1 degCW =0, degV =-1.
It is induced by the Euler element:

eu = Z Xj%: Z ijj—i—Zc,(l—r)eHc(W,V),

1<j<n J o 1<j<n rerR

where (x1,...,x,) and (y1,...,yn) are dual bases of V* and V.

eu acts locally finitely on each M € O, hence M € O, is C-graded.

z:= Zc,(l —r) € Z(CW) acts by a scalar cg on E € lrr CW.
rerR

eu acts on A(E)g = Sa(V*)® E by d + ck.

A(E) — L.(E) unique simple quotient (get all simples in O)

0 — Rad A (E) — A(E) — L(E) — O
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Grading

@ degV* =1 degCW =0, degV =-1.
@ It is induced by the Euler element:

eu = Z Xj%: Z ijj—i—Zc,(l—r)eHc(W,V),

1<j<n J o 1<j<n rerR

where (x1,...,x,) and (y1,...,yn) are dual bases of V* and V.

eu acts locally finitely on each M € O, hence M € O, is C-graded.

z:= Zc,(l —r) € Z(CW) acts by a scalar cg on E € lrr CW.
rer
eu acts on A(E)g = Sa(V*)® E by d + ck.

A (E) — Lc(E) unique simple quotient (get all simples in O.)

0 — Rad A (E) — A(E) — L(E) — O
Rad A (E) € 02 :={M € O, | MY #0=d € cg+ Z=o}

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module



O is a highest weight category on the poset (Irr CW, <.), where

E>.F <= cc—cr € Zsy,

with standard objects A(E).




O is a highest weight category on the poset (Irr CW, <.), where

E>.F <= cc—cr € Zsy,

with standard objects A(E).

0 — Rad A (E) = A(E) — L(E) — 0,
In particular,
[RadA(E): L(F)]#0= F > E.



Complex reflections groups, braid groups, Hecke algebras Definition

Rational Cherednik algebras Standard modules
Etingof’s criterion for Coxeter groups Grading, c-order, highest weight category
Our criterion for complex reflection groups Basic question: support of simple modules

Highest weight category and c-order

Theorem [Ginzburg-Guay-Opdam-Rouquier]
O is a highest weight category on the poset (Irr CW, <.), where

E>CF<:>CE—CF€Z>0,

with standard objects A (E).

0 — Rad A (E) = A(E) — L(E) = 0,
In particular,
[RadAL(E) : L(F)] 0= F > E.

Also, each L.(E) has a projective cover P.(E) which is A-filtered:
0— K(E) = P(E) = A(E) — 0,
(Ko(E) : A(F)) #0 = F <. E.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module



The support supp M of M € O, is the support of M seen as a finitely
generated C[V]-module, i.e. a coherent sheaf on V.
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The support supp M of M € O, is the support of M seen as a finitely
generated C[V]-module, i.e. a coherent sheaf on V.

Given E € Irr CW, what is the support of L.(E)? l

When is L.(E) finite dimensional? (<= supp L.(E) = {0})




The support supp M of M € O, is the support of M seen as a finitely
generated C[V]-module, i.e. a coherent sheaf on V.

Given E € Irr CW, what is the support of L.(E)? l

When is L.(E) finite dimensional? (<= supp L.(E) = {0})

Spherical case: E =1, and A (1) = C[V] — Lc(1).
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Support

Definition
The support supp M of M € O, is the support of M seen as a finitely
generated C[V]-module, i.e. a coherent sheaf on V.

Basic question
Given E € Irr CW, what is the support of L.(E)?

Subquestion
When is L.(E) finite dimensional? (<= supp L.(E) = {0})
Spherical case: E =1, and A(1) = C[V] — L.(1).

Theorem (Varagnolo—Vasserot)

For W Weyl group and ¢ constant, dim L.(1) < co <= ¢ € Qs with
denominator a regular elliptic number for W.
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@ Classification of complex reflection groups
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Assume (W, S) is a Coxeter system.



Assume (W, S) is a Coxeter system. Consider the Poincaré polynomial

Puta) = Y o =~ [[law)L

wew i

where the d;(W) are the fundamental degrees of W, and
[m:==1+g+ -+ ¢ =] qm Pa-



Complex reflections groups, bl’alt! groups, Heclfe algebras Case of equal parameters
Rational Cherednik algebras
q re criron Case of unequal parameters
Etingof’s criterion for Coxeter groups q
. g Picture for Fy
Our criterion for complex reflection groups

Coxeter groups, case of equal parameters

Assume (W, S) is a Coxeter system. Consider the Poincaré polynomial
Pw(q) == Y q"" =[]ld:(W),
wew i
where the d;(W) are the fundamental degrees of W, and
[m:=1+q+- 4" = [ligm ®a
Theorem (Etingof)

Let ¢ € C be a constant and q := e?™i¢ and consider a point v € V,
with stabilizer W' := W,,.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Our criterion for complex reflection groups

Coxeter groups, case of equal parameters

Assume (W, S) is a Coxeter system. Consider the Poincaré polynomial
Pw(q) == Y q"" =[]ld:(W),
wew i
where the d;(W) are the fundamental degrees of W, and
[ml:=1+q+- 49" = l1z4m Pa-
Theorem (Etingof)

Let ¢ € C be a constant and q := e?™i¢ and consider a point v € V,
with stabilizer W/ := W,.. Then

P
v & supp Lc(1) <~ (c € Qso and W : W], = P—MV/V/ q) = O)

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Our criterion for complex reflection groups

Coxeter groups, case of equal parameters

Assume (W, S) is a Coxeter system. Consider the Poincaré polynomial

Pw(a)i= > a") =]la(w)],

wewWw

where the d;(W) are the fundamental degrees of W, and
[m:=1+q+- 49" =[] 14m Pa-

Theorem (Etingof)

Let ¢ € C be a constant and q := e?™i¢ and consider a point v € V,
with stabilizer W/ := W,.. Then

P
v & supp Lc(1) <~ (c € Qso and W : W], = P—MV/V/ q) = O)

i.e., iff ¢ € Q< with denominator exactly m, such that

#{i | m divides d;(W)} > #{i | m divides d;(W')}

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Coxeter groups, case of equal parameters

Example: Fg4, equal parameters

Py = [2][6][8][12] = P332 DD,

w’ Pw: W W,
B3, G [2][4][6] = P3P, Pg | DoP3D, PP
ArA1L ALA | 2]2][8] = $30s PID;P2D2DgD ;)

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7)

Support of the spherical module
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Our criterion for complex reflection groups

Coxeter groups, case of equal parameters

Case of equal parameters
Case of unequal parameters
Picture for Fy

Example: Fg4, equal parameters

Py = [2][6][8][12] = P332 DD,

w’ Pw: W W,
B3, G [2][4][6] = P3P, Pg | DoP3D, PP
ArA1L ALA | 2]2][8] = $30s PID;P2D2DgD ;)

Thus L.(1) is finite dimensional iff ¢ € Q¢ with denominator among
2,3,4,6,8,12.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Coxeter groups, case of equal parameters

Case of equal parameters
Case of unequal parameters
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Example: Fg4, equal parameters

Py = [2][6][8][12] = P332 DD,

w’ Pw: W W,
B3, G [2][4][6] = P3P, Pg | DoP3D, PP
ArA1L ALA | 2]2][8] = $30s PID;P2D2DgD ;)

Thus L.(1) is finite dimensional iff ¢ € Q¢ with denominator among
2,3,4,6,8,12. Otherwise it has full support.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Coxeter groups, case of equal parameters

Example: Fg4, equal parameters

Py = [2][6][8][12] = P332 DD,

w’ Pw: W W,
B3, G [2][4][6] = P3P, Pg | DoP3D, PP
ArA1L ALA | 2]2][8] = $30s PID;P2D2DgD ;)

Thus L.(1) is finite dimensional iff ¢ € Q¢ with denominator among
2,3,4,6,8,12. Otherwise it has full support.

gap> H:=Hecke(CoxeterGroup("F",4), [x]);
Hecke (F4,x)

gap> SphericalCriterion(H) ;

[ P2P3P4P6P8P12(x), P272P3P4"2P6~2P8P12(x),
P272P3P4"2P6°2P8P12(x) , P2P3P4P6P8P12(x) ]

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module



Assume (W, S) is a finite Coxeter system with two conjugacy classes of
reflections.



Assume (W, S) is a finite Coxeter system with two conjugacy classes of
reflections. Consider the two variable Poincaré polynomial

13 14
PW(quqZ) — Z q11(W)q22(W)'
wew



Assume (W, S) is a finite Coxeter system with two conjugacy classes of
reflections. Consider the two variable Poincaré polynomial

0 0
Pw(a )=y o' ar™.
wew

A positive line in @ = C? is a line of with equation

aici + axc = a, a;>0, a>0.
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Assume (W, S) is a finite Coxeter system with two conjugacy classes of
reflections. Consider the two variable Poincaré polynomial

Pu(ar, ) = qi(gp ).
weW

A positive line in @ = C? is a line of with equation

aic1 + axcr = a, a; >0, a>0.

Theorem (Etingof)

Let ¢ = (c1,¢) € €=C2? and g = (q1, q2) := (e>™™@, e2™@2), and
consider a point v € V, with stabilizer W/ := W,.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Assume (W, S) is a finite Coxeter system with two conjugacy classes of
reflections. Consider the two variable Poincaré polynomial

¢
Pw(q1,q2) Z a2,
wew

A positive line in @ = C? is a line of with equation

aic1 + axcr = a, a; >0, a>0.

Theorem (Etingof)

Let ¢ = (c1,¢) € €=C2? and g = (q1, q2) := (e>™™@, e2™@2), and
consider a point v € V/, with stabilizer W’ := W,,.. Then

v ¢ supp Lc(1) <= W W, :=E2(q)=0

w!

< ¢ belongs to a positive line where >

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Example: F4, unequal parameters

Py = ®203(q1)P2P3(q2) P3P4P6(q192)P2(9165) P2(a7 02)
w’ W Wg
Bs P3(q2) P2P4P6(q192)P2(q193)
A2Ar | D3(q2)P3PaPs(q192)P2(9195)P2(91q2)
AiA; | G3(q1)P3PaPs(q192)P2(91G3)P2(a7 G2)
G P3(g1) PP P6(q192)P2(q1 92)

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Example: F4, unequal parameters

Py = ®203(q1)P2P3(q2) P3P4P6(q192)P2(9165) P2(a7 02)
w’ W Wg
Bs P3(q2) P2P4P6(q192)P2(q193)
A2Ar | D3(q2)P3PaPs(q192)P2(9195)P2(91q2)
AiA; | G3(q1)P3PaPs(q192)P2(91G3)P2(a7 G2)
G P3(g1) PP P6(q192)P2(q1 92)

gap> H:=Hecke(F4, [x,x,y,y]);

Hecke (F4, [x,x,y,y])

gap> SphericalCriterion(H);

[ P3(y)P2P4P6(xy)P2(xy~2), P3(y)P272P4P6(xy)P2(xy~2)P2(x"2y),
P3(x)P2~2P4P6 (xy)P2(xy~2)P2(x"2y), P3(x)P2P4P6(xy)P2(x"2y) ]

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Coxeter groups, case of unequal parameters

Example: F4, unequal parameters

Pw = ®203(q1)P23(q2) P304 P6(q192)P2(q195)P2(gi g2)
W WL w7,
Bs 3(q2)P2P4P6(q192)P2(q103)
A2Ar | D3(q2)P3PaPs(q192)P2(9195)P2(91q2)
A1A; | D3(q1) P3P P6(q192)P2(9165)Pa(95 2)

G P3(q1) P24 P6(q102)P2(g72)
_ 12
5 =m, me{3.3} + Zxo
a+o =m, me{%a%7%7%7%} + ZZO
c+2c =m, mel + Zso
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Coxeter groups, case of unequal parameters

Example: F4, unequal parameters

Py = ®203(q1)P2P3(q2) P3P4P6(q192)P2(9165) P2(a7 02)
W W W,
Bs P3(q2) P24 P6(q192) P2(193)
A2Ar | D3(q2)P3PaPs(q192)P2(9195)P2(91q2)
A1As | D3(q1)P3PuP6(q192)P2(103)P2(gig2)

G ®3(q1) P2P4P6(q192)P2(g1q2)
a  =m, me{},35} + Zxo
a+o = m, mE{%,%,%.%%} + ZEO
20+ =m m e % + Z>o
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Example: F4, unequal parameters

Py = ®203(q1) P293(q2) P304 P6(q192) P2(9163) P2(a7 2)
w’ W w,
Bs P3(q2) P24 P6(q1G2)P2(q1G3)
ArA; | D3(q2) PP, Pe(q102)P2(q1a3)P2(g5 02)
A1As | ©3(q1) PP, Pe(q102)Pa(q193)P2(G3 02)

G P3(q1) P24 P6(q102)P2(0162)
Common lines: at+e = {$53.2.2} + Zx
12 12
H H G =133 Z Cl =135, 32 Z
Intersection points: 2= 13 3}1+ 20 1= 143 3}1+ =0
C1+2C2:§+ZZO 2C1+C2:§+ZZO
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Picture for F4: type Bs parabolic

/

supp Lc(1) 2 VW)
AN

C=m,

m < {%a%}"—ZzO

c1+ ¢ =m,
111365
me{s,2:3:3 81 t2Z>0

¢ +2c =m,

mG%—i—ZZg
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Picture for F4: type (3 parabolic

(&)

supp Lc(1) 2 V(&)

i =m,

m & {%%}"’ZEO

7 ¥,

c1+ c =m,
11135
me{s, .33 81 t2Z>0

2ci +c =m,

mG%—ﬁ-ZZO
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Picture for F4: intersecting conditions
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Picture for F4: finite dimensional locus
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Localized to V™, the rational Cherednik algebra becomes isomorphic to
Dyres x W. By monodromy, we get the Knizhnik-Zamolochikov functor

KZ:0.(W,V)— CBy-mod



Complex reflections groups, bl’alt! groups, Heclfe algebras e (4672, (i) e (R
Rational Cherednik algebras

Etingof’s criterion for Coxeter groups

Our criterion for complex reflection groups

Functor KZ

Support criterion
The spherical case

Localized to V™, the rational Cherednik algebra becomes isomorphic to
Dyree x W. By monodromy, we get the Knizhnik-Zamolochikov functor

KZ:0.(W,V)— CBy-mod

Theorem (Ginzburg-Guay-Opdam-Rouquier)

The functor KZ factors through an exact functor
KZ:0(W, V) — Hq(W)-mod

where Ho(W) = CBw /(I1, ey (on — X(r1) qH,x)) Hepa wy-

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Our criterion for complex reflection groups

Functor KZ

Localized to V™, the rational Cherednik algebra becomes isomorphic to
Dyree x W. By monodromy, we get the Knizhnik-Zamolochikov functor

KZ : (W, V) — CBy-mod

Theorem (Ginzburg-Guay-Opdam-Rouquier)

The functor KZ factors through an exact functor
KZ:0(W, V) — Hq(W)-mod

where Ho(W) = CBw /(I1, ey (on — X(r1) qH,x)) Hepa wy-

It sends a simple object to a simple object or 0.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Our criterion for complex reflection groups

Functor KZ

Localized to V™, the rational Cherednik algebra becomes isomorphic to
Dyree x W. By monodromy, we get the Knizhnik-Zamolochikov functor

KZ : (W, V) — CBy-mod

Theorem (Ginzburg-Guay-Opdam-Rouquier)

The functor KZ factors through an exact functor
KZ:0(W, V) — Hq(W)-mod

where Ho(W) = CBw /(I1, ey (on — X(r1) qH,x)) Hepa wy-

It sends a simple object to a simple object or 0.

It is fully faithful on projective objects.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Our criterion for complex reflection groups

Functor KZ

Localized to V™, the rational Cherednik algebra becomes isomorphic to
Dyree x W. By monodromy, we get the Knizhnik-Zamolochikov functor

KZ : (W, V) — CBy-mod

Theorem (Ginzburg-Guay-Opdam-Rouquier)

The functor KZ factors through an exact functor
KZ:0(W, V) — Hq(W)-mod

where Ho(W) = CBw /(I1, ey (on — X(r1) qH,x)) Hepa wy-

It sends a simple object to a simple object or 0.

It is fully faithful on projective objects.

It is representable by some projective object Pkz.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module



Let W’ be a parabolic subgroup of W.



Let W’ be a parabolic subgroup of W. Then

W' =W, = W, for some v eV, A& V*,



Let W’ be a parabolic subgroup of W. Then

W' =W, = W, for some v eV, A& V*,

V= VW’ ® (V*W/)J‘, V= V*W’ ® (VWI)J‘.
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Support criterion
The spherical case

Let W’ be a parabolic subgroup of W. Then

W' =W, = W, forsome v eV, A& V*,
V — VW/ EB (V*WI)L’ V* — V*WI @ (VW/)L.

Bezrukavnikov and Etingof have defined exact functors

Res,, resy

/\)
He(W, V) He (W', v/ VW'

\—/

Ind,,ind)y

with adjunctions (Res,, Ind,) and (indy, resy).

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module



@ The point v € V is in supp Lc(E) iff Res, L.(E) # 0.

@ Res, ~resy and Ind, ~ ind), so that Res, and Ind, are biadjoint.

@ The functors Res) ! and Ind.! are biadjoint.
q q
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Our criterion for complex reflection groups

Induction and restriction functors

Functors KZ, Ind and Res
Support criterion
The spherical case

Theorem (Bezrukavnikov-Etingof, Shan, Losev)
@ The point v € V is in supp L.(E) iff Res, Lc(E) # 0.
@ Res, ~ resy and Ind, >~ ind), so that Res, and Ind, are biadjoint.

© The functors Res%" and Ind%i7 are biadjoint.
q

’
q

Composing unit and counit:
0y 2y
1— Indg{Z Res:}CZ — 1,

we get an endomorphism of the identity of J{s-mod.

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module
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Etingof’s criterion for Coxeter groups

Our criterion for complex reflection groups

Induction and restriction functors

Functors KZ, Ind and Res
Support criterion
The spherical case

Theorem (Bezrukavnikov-Etingof, Shan, Losev)
@ The point v € V is in supp L.(E) iff Res, Lc(E) # 0.
@ Res, ~ resy and Ind, >~ ind), so that Res, and Ind, are biadjoint.

© The functors Res%" and Ind%i7 are biadjoint.
q

’
q

Composing unit and counit:
Hy . Hg
1— Indg{‘,q Res:}q7 — 1,
we get an endomorphism of the identity of J{s-mod.

Deformed index |W : W’'|, := action on 1, (a scalar).
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Our criterion for complex reflection groups

Functors KZ, Ind and Res
Support criterion
The spherical case

Induction and restriction functors

Theorem (Bezrukavnikov-Etingof, Shan, Losev)
@ The point v € V is in supp L.(E) iff Res, Lc(E) # 0.
@ Res, ~ resy and Ind, >~ ind), so that Res, and Ind, are biadjoint.

© The functors Resi" and Ind%i7 are biadjoint.
q

’
q

Composing unit and counit:
Hy . Hg
1— Indg{‘,q Res:}q7 — 1,
we get an endomorphism of the identity of J{s-mod.

Deformed index |W : W’'|, := action on 1, (a scalar).
Defined up to a non-zero scalar. . .
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Our criterion for complex reflection groups

Induction and restriction functors

Theorem (Bezrukavnikov-Etingof, Shan, Losev)
@ The point v € V is in supp L.(E) iff Res, Lc(E) # 0.
@ Res, ~ resy and Ind, >~ ind), so that Res, and Ind, are biadjoint.

© The functors Resi" and Ind%" are biadjoint.

7 !
q q

Composing unit and counit:
Hy . Hg
1— Indg{‘,q Res:}q7 — 1,
we get an endomorphism of the identity of J{s-mod.

Deformed index |W : W’'|, := action on 1, (a scalar).
Defined up to a non-zero scalar... but “|W : W’|, = 0" makes sense!
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Complex reflections groups, braid groups, Hecke algebras
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Support criterion

Etingof’s criterion for Coxeter groups 3
ng e xeter group: The spherical case

Our criterion for complex reflection groups

Induction and restriction functors

Theorem (Bezrukavnikov-Etingof, Shan, Losev)
@ The point v € V is in supp L.(E) iff Res, Lc(E) # 0.
@ Res, ~ resy and Ind, >~ ind), so that Res, and Ind, are biadjoint.

© The functors Resi" and Ind%" are biadjoint.

7 !
q q

Composing unit and counit:
Hy . Hg
1— Indm Res:}q7 — 1,
we get an endomorphism of the identity of J{s-mod.

Deformed index |W : W’'|, := action on 1, (a scalar).
Defined up to a non-zero scalar... but “|W : W’|, = 0" makes sense!

Assuming symmetry of Hecke algebras (with canonical trace):
quotient of principal Schur elements, already computed, and in GAP3!
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The following are equivalent:
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The following are equivalent:

(a) v esupplL.
(b) The adjunction counit Ind, Res, L — L is surjective.




Let P+ A —-LelrrO.and v e V.
The following are equivalent:

(a) v esupplL.
(b) The adjunction counit Ind, Res, L — L is surjective.
(c) The adjunction counit Ind, Res, A — A is surjective.




Complex reflections groups, bl’alt! groups, Heclfe algebras Functors KZ, Ind and Res
Rational Cherednik algebras

Etingof’s criterion for Coxeter groups

Our criterion for complex reflection groups

Support criterion using KZ

Support criterion
The spherical case

Proposition (Griffeth—J.)

let P> A —>»LelrrO.and v e V.

The following are equivalent:

(a) v €supplL.

(b) The adjunction counit Ind, Res, L — L is surjective.
(c) The adjunction counit Ind, Res, A — A is surjective.
(d) The adjunction counit Ind, Res, P — P is surjective.
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Etingof’s criterion for Coxeter groups

Our criterion for complex reflection groups

Support criterion using KZ

Support criterion
The spherical case

Proposition (Griffeth—J.)

let P> A —>»LelrrO.and v e V.
The following are equivalent:

(a) v €supplL.

(b) The adjunction counit Ind, Res, L — L is surjective.
(c) The adjunction counit Ind, Res, A — A is surjective.
(d) The adjunction counit Ind, Res, P — P is surjective.
(e)

e) P is a direct summand of Ind, Res, P.
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Etingof’s criterion for Coxeter groups

Our criterion for complex reflection groups

Support criterion using KZ

Support criterion
The spherical case

Proposition (Griffeth—J.)

let P> A —>»LelrrO.and v e V.

The following are equivalent:

(a) v €supplL.

(b) The adjunction counit Ind, Res, L — L is surjective.

(c) The adjunction counit Ind, Res, A — A is surjective.

(d) The adjunction counit Ind, Res, P — P is surjective.
)
) K

e) P is a direct summand of Ind, Res, P.

f) KZ(P) is a direct summand of Ind Resgf, KZ(P).

(
(
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If ¢ <0, then ¢ is maximal among the cg, hence

in the region ¢ <0, Lc(1) = A(1) = C[V] has full support V.




If ¢ <0, then ¢ is maximal among the cg, hence

in the region ¢ <0, Lc(1) = A(1) = C[V] has full support V.

If ¢ > 0, then ¢ is minimal among the cg, hence A (1) = P(1).
Moreover, KZ A (1) = 1,.




Complex reflections groups, braid groups, Hecke algebras

Rational Cherednik algebras [ (%, i) et (s

Support criterion

Etingof’s criterion for Coxeter groups T el @

Our criterion for complex reflection groups

The spherical case: negative and positive cones

Proposition

If ¢ <0, then ¢; is maximal among the cg, hence

in the region ¢ <0, Lc(1) = A (1) = C[V] has full support V.

Proposition

If ¢ >0, then ¢ is minimal among the cg, hence A (1) = P.(1).
Moreover, KZ A.(1) = 1,. Hence

@
in the region ¢ > 0, vésuppl(l) <= 1,¢ Indi‘,7 Resii7 1,
= |W:W|;=0
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@ The set of parameters for which v ¢ supp L.(1) is equal to the zero
locus of some analytic function.

@ This locus must be a union of hyperplanes ce = m with m € Z.

Let (W, V) be any complex reflection group.




Complex reflections groups, braid groups, Hecke algebras
Rational Cherednik algebras

Etingof’s criterion for Coxeter groups

Our criterion for complex reflection groups

The spherical case: conclusion

Functors KZ, Ind and Res
Support criterion
The spherical case

Claim

@ The set of parameters for which v ¢ supp L.(1) is equal to the zero
locus of some analytic function.

@ This locus must be a union of hyperplanes cg = m with m € Z~,.

Theorem (Griffeth—J.)

Let (W, V) be any complex reflection group.
Let c be an arbitrary parameter.
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Our criterion for complex reflection groups

The spherical case: conclusion

Functors KZ, Ind and Res
Support criterion
The spherical case

Claim

@ The set of parameters for which v ¢ supp L.(1) is equal to the zero
locus of some analytic function.

@ This locus must be a union of hyperplanes cg = m with m € Z~,.

Theorem (Griffeth—J.)

Let (W, V) be any complex reflection group.
Let ¢ be an arbitrary parameter.
For v € V with stabilizer W/,
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Etingof’s criterion for Coxeter groups

Our criterion for complex reflection groups

The spherical case: conclusion

Functors KZ, Ind and Res
Support criterion
The spherical case

Claim

@ The set of parameters for which v ¢ supp L.(1) is equal to the zero
locus of some analytic function.

@ This locus must be a union of hyperplanes cg = m with m € Z~,.

Theorem (Griffeth—J.)

Let (W, V) be any complex reflection group.
Let ¢ be an arbitrary parameter.
For v € V with stabilizer W/,

¢ belongs to a positive hyperplane where )
v & supp L(1) <~ ( ] _
¢ (1) W : W[, =0
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Etingof’s criterion for Coxeter groups

Our criterion for complex reflection groups

Functors KZ, Ind and Res
Support criterion
The spherical case

Thank you for your attention!

i’l

Happy birthday Bernard!
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Generators of monodromy: Tg, T1,..., Th1

Parameters: Qp, @1,...,Q,-1,9
Hecke relations:

Il (o-@)=0 and (Ti+1)(Ti—q)=0 fori1<i<n-1
0<j<r—1



Generators of monodromy: Tg, T1,..., Th1

Parameters: Qp, @1,...,Q,-1,9
Hecke relations:

Il (o-@)=0 and (Ti+1)(Ti—q)=0 fori1<i<n-1

0<j<r—1
r—1n-—1
Chlouveraki-Jacon: |G(r, 1, n)|q = [n]! H l_I(q’"Qij_1 -1)
j=1 m=0



Complex reflections groups, brald. groups, Heclfe algebras Functors KZ, Ind and Res
Rational Cherednik algebras L
Support criterion

Etingof’s criterion for Coxeter groups .
oo P The spherical case
Our criterion for complex reflection groups

The infinite family G(r, 1, n)

Generators of monodromy: Tg, T1,..., Th—1
Parameters: Qu, Q1,...,Qr_1,9
Hecke relations:

H (To—Q)=0 and (T;+1)(Ti—q)=0 for1<i<n-1

0<j<r—1
r—1n-—1
Chlouveraki-Jacon: |G(r,1,n)|q = [n]! H H(meOQfl -1)
j=1m=0

Maximal parabolic subgroups: &y x G(r,1,n— k), for 1 < k <n
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The infinite family G(r, 1, n)

Generators of monodromy: Tg, T1,..., Th—1
Parameters: Qu, Q1,...,Qr_1,9
Hecke relations:

H (To—Q)=0 and (T;+1)(Ti—q)=0 for1<i<n-1

0<j<r—1
r—1n-—1
Chlouveraki-Jacon: |G(r,1,n)|q = [n]! H H(meOQfl -1)
j=1m=0

Maximal parabolic subgroups: &y x G(r,1,n— k), for 1 < k <n

-1 n-1
|G(r,1,n): 6k x G(r,1,n—k)|q = L’j H H (meij_l —1)

Jj=1 m=n—k
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Rational Cherednik algebras

Etingof’s criterion for Coxeter groups

Our criterion for complex reflection groups

The infinite family G(r, 1, n)

Functors KZ, Ind and Res
Support criterion
The spherical case

For ¢ = (co,d1,---,dr—1), g = € 2™ and Q; = Gl
L.(1) is finite dimensional if and only if either
(a) 31 <j<r—1and k >0 with k = —j mod r and

do — dj+ r(n— 1) = k,

or

(b) co =¢/d for some 0 # d | n and some ¢ > 0 coprime to d, and also
do — dj + rmcy = k

forsomen—d<m<n—1land1<;<r—1,and and k > 0 with
k= —j mod r.

Codimension 2!
cf Gerber-Norton (based on Shan, Shan—Vasserot, Losev)

Stephen Griffeth (Talca), Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Support of the spherical module



Complex reflections groups, braid groups, Hecke algebras

Functors KZ, Ind and Res
Support criterion
The spherical case

Rational Cherednik algebras
Etingof’s criterion for Coxeter groups
Our criterion for complex reflection groups

Exceptional complex reflection groups

We give |W|, and |W : W’|, for all maximal parabolic subgroups W’ (up to a

unit).

Note: some cyclotomic polynomials become reducible over the field of
definition.

[ Galq [ ®20T 07 () ®a®}0f (x0)P2(x130) |

[ 164 : Z3lq | ®2%g (x1)®29L(0)®2(x1%2)

[Gslq @7 (x1) 03 (2) 7 (v1)®3 (72) 0 (x1y1) P2 (x1¥2) P2 (xv1 ) ®g (x22) P2 (x X2¥1 ¥2)
1G5 : Z3lq | ®3 (r1)®5(v2)®g (x1y1)®2(x1y2) P2 (x0v1) P (x22) P2 (x1 x0v1 ¥2)
1G5 : Z1 lq | @5 (x)®500) @4 (x1y1)®2(x112) P2 (xoy1) ®g (x212) P2 (x1 X2¥1 ¥2)
1G6lq Do (x1) % (y1)PE (v2) Po Pg (x1v1) P2 P (x1¥2) P2 (x1¥1¥2)
[Go : A1lqg | ®5 (1) Ph(v2) P20 (x1y1) P2 Ph (x1v2)®2 (x1y12)
[Go - Z3lq | ®20x1)®20f (x1y1)®2 0L (x1y2) P2 (x1y152)
1G71q @ (x1) 7 (11)93 (1) @7 (21)9% (22)Pg (x1¥121) P2 (x1¥1 22) P2 (<1 7221 g (x1¥222) P2 (x1 ¥1 ¥221 29)
167 : A1lqg | ®5 (1) P2 (v2)®3 (21) % (2)Ph (x1¥121) P2 (x1y122)®2 (x1¥221) PG (x1v222)®2 (X1 ¥1 Y221 22)
1G7 : Zlq | ®20x1)®% (21)P5(22)Pg (x1¥121) P2 (x1y122)®2 (x1¥221) PG (x1v220) P2 (x1¥1 5271 22)
1G7 - 23"1q | ®2()®3 (v1)®3(y2)®g (1 y121)P2(x1122) P2 (1 v221) g (x1¥220) 2 (1 ¥1 ¥221 29)
[ 1Gglg [ ®27o750a)®293(x)05®15(x3)® (x120)®2(x1x3)4 (x2x3)®2 (x1 x273) |
| 16 : Zalg | ®150a)®300)0]5(x3)07 (x1x0) @ (x1 x3) 07 (x0x3) P2 (x1 x0x3) |
1Golg °2(X1)‘1’,';'(Y1)°2(y2)®f;(y3)°i/2(xln)°3<X1y2)012(X1Y3)°£/(X1Y1y2)“’2(X1Y1y3)°£(X1Y2y3)°2(X%Y1y2Y3)
1Gg : A1lqg "f;/(yl)°2(¥2)°2(Y3)®{’2(X1Y1)°3(X1Y2)°12(X1Y3)°f;/(X1V1Y2)"’2(X1V1Y3)°£(X1V2Y3)°2(X%Y1V2Y3)
|Gy : Z4lq °2(X1)“’ilz(xln)°3(X1Y2)°£2(X1Y3)“’f;/(X1Y1y2)°2(X1Y1y3)°£(X1y2y3)°2(xl2y1y2y3)

etc. .. We thank Gunter Malle, Maria Chlouveraki and Jean Michel!
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