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WRONSKI’S FACTORIZATION OF POLYNOMIALS

ALAIN LASCOUX*

L.1.T.P., Université Paris VIII, Paris, France

In the middle of Wronski's papers [8], [9], [10], [11] one can come across solutions of important
problems such as finding, for any polynomial with complex coefficients, the factor which
corresponds to roots of modulus less than 1.

1. Background

Jozef Maria Hoene-Wronski (1778-1853) was a universal philosopher and
scientist. He also knew all languages of culture, Polish, French, Latin, Greek,
Hebraic, Arabic, Aramaic, though not English.

His aim was a complete “Réforme du savoir Humain” including both the
theory of spontaneous locomotion and the art of governing.

However, his industrial speculations were not bought by the government,
nor was his mathematical work accepted by the Academy.

He was therefore compelled to extract (painfully, having even to go to
court) money from a banker to publish his philosophical theories. Unfor-
tunately, the finiteness of the banker’s fortune and the malevolence of the
banker’s wife led to a delay of more than 30 years in the publication of his
work, apart from a small “Canon des Logarithmes™.

Wronski summarizes his object in his “Prolégoménes du Messianisme”:

“L’objet de cet ouvrage est de fonder péremptoirement la vérité sur la terre, de
réaliser ainsi la philosophie absolue, d'accomplir la religion, de réformer les
sciences, d'expliquer I'histoire, de découvrir le but supréme des Etats, de fixer
les fins absolues de 'homme et de dévoiler les destinées des nations” [10,
p. 10]}.

In fact, according to his own terms,

It was with much grief that Hoene-Wronski was forced to leave his grave
philosophical tasks to indulge in the Réforme des Mathématiques ... Math-

* CNRS, PRC Math-Informatique, Programme Culturel PROCOPE.
This paper is in final lorm and no version of it will be submitted for publication elsewhere.
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ematical questions, however difficult, are only a secondary object, a sort of
hobby in the middle of his high philosophical thoughts. [10, p. 25].

He was forced to offer his mathematical laws as a proof of the absolute
truth of his philosophical and religious Messianic doctrine (that he borrowed
from Towianski), the main weakness of philosophy being that Popper’s
criterion of falsification cannot be applied to its statements, leaving place for
much illusions which Wronski proposes to dispel.

Though restricting his field of research, he was nevertheless able to
attain the Supreme Law of mathematics. which contains all known mathematics
as a very special case and extends indefinitely beyond what is known. Moreo-
ver, his law would also comprise all formulas and all methods whick can he
obtained in the future of Science [10, p. 32].

Wronski almost instantly met with the outright hostility of the “savants
sur brevét” belonging to this “born enemy of truth”, that is to say, to the
Académie des Sciences de Paris. No doubt Wronski's clear-cut opinion
would nowadays be totally reversed. now that algorithmics and combinato-
rics are so well received in this noble assembly [5]; he would no more write
that the only aim of this corporation is exploitation of Man, consequently
exploitation of Heads of State, using the imposing authority of Science [10,
p. 4].

Thus, instead of devoting his full attention to solving the following
rigorous system of equations [11, p. 6]:

“Let « be the anarchy degree, 0 the degree of despotism. Then one has the

following precise relations:

(L) . {f’ﬂ.ﬁ’]}""x (’E)
m h n

(12) 5= {"’*”‘_’”“‘}'_px(f)p“,
'mn m

where m represents the numerical influence of the national party, p the standard
deviation of the philosophy of this party from true religion, n the influence of
the moral party and r the deviation of religion from true philosophy”.

Wronski had to write such trivial things as the Résolution Générale des
Equations (de tout degré) which we shall examine in detail in Section 2. For
a survey of his mathematical work, we refer to [1].

“We do not need to emphasize how painful such a pedestrian task must be
to a man who, in the innermost recesses of his retreat, has spent his life
scrutinizing and discoverirg creation laws, as well as the final destiny of
rational beings” [10, p. 14].
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Les pages qui suivent sont les notes du cours d'informatique ayant le méme
intitulé.

A 1'heure ol malgré les peurs et les incertitudes, le succés des ordinateurs
marque notre époque de son sot, il n'est point besoin de commenter 1'importance
pour 1'action du sujet dont on n'a fait ici qu'effleurer les aspects les plus im-
médiatement applicables ; c'est ce qu'on compris les étudiants-chercheurs et les
chercheurs enseignants qui ont participé nombreux 3 cette entreprise pédagogique
et dont les critiques et suggestions ont été ci-incorporés avec notre gratitude.

Le monoide plaxique, les g-fonctions symétriques et les polynémes de Schubert
ont une place de choix dans cet avenir républicain (mais aussi écologique) et
seront 1'objet de 8 (ou 9) fascicules ultérieurs.

Nous remercions Monsieur le Directeur de 1'U.E.R. R.Godement sous 1'égide
duquel les autorisations nécessaires nous ont été accordées dans le cadre
scientifique de 1'Université Paris 7 (Président, Prof. Le Fol) .

le L.I.T.P., L.A.248, et son Président, le Professeur Nivat, sont toutefci
seuls responsables du contenu technique et de 1l'orientation volontairement donné:
& cet exposé qui s'appuye sur les travaux classiques des algébristes des sidcles
passés.
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Th. MUIR The theory of determinants in the Historical order,
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entre 1906-1928 ; réimpression par Dover, 1960.

D.E.LITTLEWOOD The Theory of Group Characters, Oxford 1950

I.G.MACDONALD Symmetric Funclions and Hall Polynomials, Oxford Math.Mono 137
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Ribbon tableaux, Hall-Littlewood functions and
unipotent varieties

Abstract. We introduce a new family of symmetric functions, which are defined in terms of ribbon tableaux and
generalize Hall-Littlewood functions. We present a series of conjectures, and prove them in two special cases.

The following versions are available:

* PDF (not all figures correctly displayed) (295 K)
» PostScript (342 K)
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Original motivation: plethysm

@ Irreducible tensor representations of GL(n, C):
pr: GL(n,C) — GL(Vy), Vi C (CM®K

@ )\ partition of k with at most n parts
@ Character: Schur function sy = ch(py)

@ Composition of two representations p of character f and
of character g:

ch(nop)=:gof plethysm of f by g, also denoted by g[f]

@ The problem: compute

salsu] = d%,sy

NE Al



@ More precisely, find a combinatorial description
@ if \FFd, s)[s,] is a part of

Sg - Z Clup-pSv = Z 8,5

vknd ARd

where Clryionopy ATE the Littlewood-Richardson coefficients,

and f* the number of standard tableaux of shape \.
@ For d = 2, no multiplicities

Ve V=_S8%V)aN(V) s sh = h[s,] + es,]

@ First problem: split the Littlewood-Richardson tableaux into
two sets, corresponding to the symmetric and
antisymmetric parts of the square.

@ |dea (B.L.) Formulate a version of the LR-rule with domino
tableaux, and split according to the parity of half the
number of horizontal dominos.
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2
S51 = Sa2 + S411 + S33 + 28321 + S3111 + Spoo + Seo11

_ — ,

2q — '2__ 213

2 | 2
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N ol I O O O O A

ho[s21] = Sap + Ssp1 + S3111 + S22
€2[S21] = Sa11 + S33 + S321 + So211

[C. Carré, B. Leclerc, Séminaire Lotharingien de Combinatoire, B31c (1993),
8 pp; J. Alg.Combin. 4 (1995), 201-231]
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What about higher powers?

Next step suggested by previous LLT results on Hall-Littlewood
functions at roots of unity

@ Hall-Littlewood functions

PP, = £ (t)Py
A

such that g, (q) = "W ="=0)f3 (g=1) (Hall algebra)
@ Kostka numbers

Sy =Y _ Kyu(t)Pu
M

@ Kostka numbers are special LR coefficients

NE Al



@ Dual HL functions

<Q//w P,,) = 5#!/ (<S)n Su> = 5>\u)

are t-analogues of products h,,

Q. => Kult)sy — h, (t—1)
A

@ The Kostka-Foulkes polynomials K}, (t) € N[t]

@ The RAu(q) are (parabolic) Kazhdan-Lusztig polynomials
for the affine symmetric group

NE Al



Roots of unity and plethysm formulae

@ { =1 is not the only interesting value
@ For t = ¢ a primitive rth root of unity

Q\(X:¢) = Qu(X: O T [ Qi (X: )]

i>1

where A = (1™2M2 . .n™) m;=rqi+rwith0<r <r,
and p = (112%2...nM).

@ and for rectangular partitions, we obtain plethysms with
power-sums

Q) (X ¢) = (=) D"pr[hy(X)]

NE Al



Interpretation

Consider the (reducible) GL(n, C)-module
V=NC"eoN2C"®---@ N C"
and the cyclic shift operator v : V®9 — y®d
TV RVe®: - R Vg) =Vg@ VI @ ® Vg1

lts eigenspaces W) are representations of GL(n, C).
The previous formulae imply a combinatorial description of their
characters Egk)[el,].
Can we do the same starting with V = V, irreducible ?
Answer: ribbon tableaux
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Ribbon tableaux and products of Schur functions

A Schur function s, (X) is a sum over semi-standard Young
tableaux t of shape A

sX)= > X
t€Tab (A)
where X' =TT, x™, m; number of occurences of i in t.

i
A product of r Schur functions S,.0) is a sum over r-tuples of
tableaux

e = hxt ... Xt
S8, S = > XXX
(t17"'7tf)

r-tuples of tableaux «+— r-ribbon tableaux
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Ribbons (rim-hooks) and ribbon tableaux

Here are the (23 = 8) 4-ribbons

and a 4-ribbon tableau of shape (87661) and weight (3211)

2

3
2
11 l4
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r-core and r-quotient

The partition A = (87241°) has as 3-core v = (211)

\_‘

AL

}

ksl

and as 3-quotient the triple ((21), (22), (2))
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The Stanton-White bijection

Choosing as 3-core k = (211), the triple
4] 2[4
3[3] [1]3] [2]3]

)

with weights (0021),(1111), (0110) corresponds to the 3-ribbon
tableau of shape \ = (87241°) and weight 1 = (1242).

2 4
2 3

s ]
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If 11 is the partition with r-quotient (19, ..., u("=1)) and empty

r-core
-
() Sy = Z X
TETab r(11,")

where Tab ,(u, -) is the set of r-ribbon tableaux of shape

A natural statistic on ribbon tableaux is the sum of the heights
of the ribbons

Example: r =11, h(R) =6

h(R)

NE Al



Spin and cospin

The relevant statistic is rather h(R) — 1, and for compatiblity
with Hall-Littlewood functions, one introduces the spin

s(R) = %(h(ﬁ’) —1), s(T)=3_s(R)

ReT

(a half-integer in general) and the cospin (an integer)
5(T)=s;(n) —s(T) for T € Tab (y,-)

The most general g-LR coefficients are defined by

éuz Z T)XT ZC (), = 1 (q)sr(X)

TETab (p, )
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The 3-quotient of A = (33321) is ((1),(1,1),(1)) and the
g-analogue of 5151157 (in this order) is

Mgy + (14 q)Ma2+ (242G + G°)M211 + (3+ 59+ 3%+ G°) M1

= (S31 — So2 — S211 + 2S1111) + (1 + q)(S22 — S211 + St111)
+(2+2q+ G°)(S211 — 351111) + (3+5q + 3% + 0°) 1111
= 831 + GSa2 + (G + G°)S211 + G°S1111

)\ . . .
The c;, ..., (q) are defined by an alternating sum but are in

N[q].

NE Al



The monomial expansion above is given by the 3-ribbon
tableaux of shape (33321) and dominant weight

.5 ,
Il 1I 11 |1 Il ll 11 |\1_‘2 123 124
o oy B g P P B P
1} IITB I—|i 'L‘ ‘2—‘ ‘\2_‘ '2 ‘2 ‘Z
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The H-functions

@ Family of spin t-analogues related to HL functions.

@ A partition of the form A = ru = (rp, ..., rus) has empty
r-core

@ Its r-quotient is obtained by grouping the parts of u
according to their class modulo r

M) =A{wjlj =—i mod r}
@ For any r, the symmetric functions

HOx: = Y xT

T€ETab ((rp,)

form a basis which is unitriangular on Schur functions
@ It can be proved that for r > ¢(u),

HO(X: 1) = Q,(X: 1)

NE Al



Some conjectures for H-functions

@ Monotonicity H\'"") — H\” is positive on the Schur basis,
that is, the coefficients are in N[t].

@ Plethysm When p = v', for ¢ a primitive r-th root of unity,
HAQ) = () pys,]
and when d|r and ( is a primitive d-th root of unity,
HP(Q) = (=)@ M9p s, )

@ Equivalently,
r—1 o
HA(t) mod 1 —t7=3"1)s,]
i=0

@ Proved by Kazuto lijima [European J. Combin. 34 (2013)
968-986]
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The H-functions associated with the partition A = (3211) are

2
Héz% = Sz211 + [ S322 + 15331 + 154111
+(t+ 17) St + 12 Saz + 12 8511 + 12 S50
3
HS) = Sapr1 + tSapo + (¢ + 2) Saat + t Sap11

+(t+21%) Sap1 + (12 + 1°) sug + (1 + £°) 8511
+213 555 + t* 51
Hé21 = Szp11 + 1S3+ (t+ tz) Saz1 + tSq111 + (t+ 22 + ts) S421
F(2 4 12+ t4) 843 + (12 4 12 + 1*) 8514
+@E+t + ) s+ (1P + P+ 18) 561 + 1 57
= Q§211

NE Al



The plethysms of s, with the cyclic characters ég') are given by
the reduction modulo 1 — 3 of Hg)zm

HS) 14 = 19863 + (£ + 1)t S601 + 86111 + (t + 1)t S54
+ (B + 202 + 2t + 1)%ss31 + (12 + 2t + 1) S50
+ (£ + 262 + 2t + 1)t*ss11 + (t+ 1)t S51111
+ (242t + 1)Os4q1 + (2 + 22 + 3t + 2)t*s430
+ (263 + 312 + 3t + 1) 1354311 + (12 + 312 4 3t + 2) 1354901
+ (£ + 262 + 2t 4+ 1) 840111 + BSa11111 + (2 + 1)38333
+ (213 4+ 312 + 2t + 1)t2533p1 + (12 + 2t + 1) 2833114
+ (12 + 2t + 1) P00 + (13 4 212 + 2t + 1)tS30011
+ (t+ 1)ts321111 + (T + 1)IS20201 + S222111

NE Al



0
€§)=Ss+3m

6§D = sy
féz) = Sp1
In general,
6= 3 swan

teSTab (n)
maj(t)=k mod n

(h3 + €3)[S21] = Sz22111 + 2833111 + 384311 + 2832211 + 2842111
+ 3S4201 + 283002 + 283321 + Sa11111
+ 28333 + Sp111 + 28531 + 2S5211 + 28432
S21[S21] = S3202 + 383321 + 2832211 + 2842111 + S22021 + S33111
+ S301111 + 3S4311 + 3S4221 + Saa1 + Ss22
+ 285211 + S51111 + 28531 + 35432 + Se21 + S54

NE Al



Ribbons tableaux and the Fock space

@ The algebra of symmetric functions can be identified with
the Fock space representation of g/ ..

Sy |A) =V, AV AV Ao where ix = A\ — K+ 1

@ This induces actions of EI, = sl, + H, where H, is a
Heisenberg algebra

@ Bosonic Fock space F = C[x1, Xz, ...] ~ Sym (xx = +px)

@ Action of EI, on F:
e the generator By of #, acts by rk% for k > 0 and as the
multiplication by p_ for k < 0.

e Action of the generators of sl particularly simple in the
basis of Schur functions s,.

NE Al



For a node ~ in ith row and jth column of A let r(y) =j — i
mod r.

Then,
esx=> 5, fisx=)_ s,

where v (resp. p) runs through all partitions obtained from A by
removing (resp. adding) a node of residue /.
For example, £, of s/3 acts on sg300 by

?ﬂ
2Jo]1]2
o1 201 ]2

-[=]v
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@ U(H,) = pr o Symis as well generated by the

Vi = ‘multiplication by p, o hy’

Visy =Y (-1 Vs,

sum over all partitions p such that x/\ is a horizontal
r-ribbon strip of weight k, where

h(u/A) =Y _(h(R) — 1)

R

sum over all the r-ribbons R tiling 1/ \.
@ and their adjoints Uy

Uks,, = Z(_1 RGEN

sum over all partitions A such that p/\ is a horizontal
r-ribbon strip of weight k.

NE Al
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A horizontal 5-ribbon strip of weight 4 and spin %
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q-Fock space representation of Ugy(g/,)

@ In the Q(q)-vector space

F=EPQa) N

AeP

v=(a,b) € Z; x Z4 is an indent i-node of X if a box of
residue i = a— b mod r can be added to A at position
(a,b)

@ Similarly, a node of residue i/ which can be removed is
called a removable i-node.

@ie{0,1,....r—1}
° )\,ysuchthaty/)\:y:

NE Al



Defining some numbers associated with a partition
@ N;(\) = t{ indent i-nodes of A } — #{ removable i-nodes of A },

@ N!/()\,v) = t{ indent i-nodes of X on the /eft of v (not counting ~)
+ —t{ removable i-nodes of X on the leftof v },

@ N/(\,v) = t{ indent /-nodes of A on the right of v (not counting
v) } — #{ removable i-nodes of A on the right of v },

@ NO(\) = #{ 0-nodes of A }.

One can construct g-analogues of the previous representations

NE Al



iwa 1990
r l
A =D gy ey =D gMOIN)
n A

") = g"MN) and o) =g MO
defines an action of Uq(sA/,)

@ Can be extended to Uq(ﬁlr) (g-wedges and g-bosons of
[Kashiwara-Miwa-Stern 1996].)

@ Key point: ‘g-bosons’ By can be replaced by g-analogues
of Ux and Vj

Vil A = (=q) M) Uklu) =D (—q) "))
@ The relations [U;, U] = [V}, V]] = 0 prove that the

H-functions are symmetric (more elementary proofs since
then)

NE Al



@ Identify F4 ~ Q(q) ® Symby |\) = s,
@ Define a linear operator v : Fq — Fq by

bg(h) = Va Vag -+ Vi, [0)

@ Then,
Q;Z)g(hli) = Z (_q)—ZS( T)Sshape( T)

Tetab (- ,p)

@ The image {vg(gx)} of any basis {g,} is a basis of the
space of Uq(sAI,)-highest weight vectors in Fg.
@ Taking g\ = s), we have

(04(81),5) = (0P W ke, (@)

(@ ..., u=1) r-quotient of ).

NE Al



Canonical bases

@ As an Uq(gl,)—module, Fq is irreducible.
@ But as Uq(;l,)—module,

Fq~ @ L(no — ms)®Ptm™

m>0

@ Each simple Uq(sA/,)-moduIe L(Ag — md) has a canonical
basis but these cannot be pieced together to form a
canonical basis of the whole 74 under Ug(g/,).

@ Such a basis (G, ) was defined in [Leclerc-T. 1996].

@ All the g-plethysms (s, ) are members of this basis.

@ The coefficients of the dual basis on Schur functions were

conjectured to give the decomposition matrices of
quantized Schur algebras at roots of unity.

NE Al



@ The proof of this conjecture [Varagnolo-Vasserot 1999]
allows one to identify the g-LR coefficients with parabolic
KL polynomials [Leclerc-T. 2000]

@ Then, a result of [Kashiwara-Tanisaki 1999] shows that
02(0)_..7M(r71)(Q) € N[q]

@ A combinatorial proof is still wanted for general r.

@ Combinatorial formula for r = 3 [J. Blasiak, Math. Z. 283
(2016), 601-628]

@ LLT polynomials have been defined for other root systems
by Lecouvey [European J. of Combin. 30 (2009) 157—-191],
and Grojnowski-Haiman (unpublished)

@ In both versions, the coefficients are parabolic KL
polynomials

NE Al



Upper and lower canonical bases of 7,

@ There is a unique g-semi-linear endomorphism x — X of
Fq such that |0) = |0), fix = fix and Vx = VjX.
@ In terms of g-wedges, reverse a prefix and normalize

|)\>:U/:U,'1 Ng U, Ng -+~ Ui, Ng - -

_ k
b = (=) g Dy, Aqui,  Age - AqUi AqUi,,, AU, Mg+

@ Let

Lt =Pzlqll)) and £ =EPzZg N
A A

@ There exists bases G,” and G, of 7 characterized by

()G = G, G, = G,
(ii) G/J{ =|A) mod qE G, =|\) mod g 'L~

J.-Y. Thibon



o Let
G =Y dw(q)N)
A

and
Gy = en(-q )n
w
@ Then,

exu(@) = Y (-9 Puxw(9)
xe6(a)

(@) = > (—)MPy, 4,9
YeGnm

(parabolic KL polynomials of Deodhar).

NE Al



Quantized Schur algebras at roots of 1

@ Sp(¢) with ¢ a primitive r-th root of 1
W(X) Weyl modules. L(x) simple modules
Conjecture [LLT] let {W()\)'} be the Jantzen filtration

Ay () = STIWO) /WO - L)lg’

i>0

Extends the LLT conjecture proved by Ariki.

Proved by Varagnolo-Vasserot for g = 1.

Proved by P. Shan [ Represent. Theory 16 (2012),
212-269] for ¢ = e?"/K k < -3

One has [dh.(q)] = [exw (-a)] .

NE Al



Back to Hall-Littlewood functions

-----

@ One can now deduce it from an earlier result of Lusztig

enxnu(9) = Kou(g?) (N> m)

@ Original proof [LLT97]: cell decompositions of unipotent
varieties

@ Open problem: similar interpretation for other LLT
polynomials ?

@ Cospin g-analogues é#(X ; 1+ q) of products of arbitrary
vertical strips are e-positive [P. Alexandersson,
arXiv:1903.03998; M. d’Adderio, JCTA 172 (2020)],

@ Not true in general. Known for (NDL(X;1 + q), special case
of a property of Hall polynomials

NE Al



Unipotent varieties

@ The coefficients g,,(q) of the monomial expansions
Q. (X;q) ZK)\M q)s) = Zgw

are the Poincaré polynomials of certain algebraic varieties.

@ Let u € GL(n,C) be a unipotent element of Jordan type .,
and let 7, be the variety of v-flags in V = C"

Vi, c Vo4, C...C Vs 1, =V

where dimV; = |.
@ The unipotent variety 7! is the set of fixed points of u in
Fo.
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Cell decompositions

@ Cell decomposition of F involving only cells of even real
dimensions ~ C? [Shimomura 1980].

@ Hence, the Poincaré polynomial has the form
Muu(1?) =) PldimHy(FY, Z)
i
and M,,(q) = | FY[Fq]|, which can be shown (by means of

the Hall algebra) to be

77 [Fqll = 9uu(q)

@ Cells are parametrized by tabloids.

NE Al



Tabloids

@ For u, v arbitrary compositions of n, a pu-tabloid of shape v
is a filling of the diagram with row lengths v4,15, ..., 1
such that i occurs p; times, each row nondecreasing.

@ For example,

—

m—x—noo|

wW|l—=|—=
w

is a (5,1, 3)-tabloid of shape (2,3,3,1)

NE Al



Inversion statistic on tabloids

@ Dimension d(t) of the cell ¢; explicitly given by Shimomura.

@ A slightly modified version e(t) (having the same
distribution) can be interpreted as a kind of ‘inversion
number’ on r-tuple of rows (e-inversions) [Terada 1993]

@ Tabloid t = (wy,...,w,) ~ r-tuple of row tableaux.
@ y the k-th letter of w;
@ x the k-th letter of w;

@ For x < y (y, x) is an e-inversion if either (a) i < j or (b)
i > j and there is on the right of x in w; a letter u < y

@ ¢(t) is equal to the number of inversions (y, x) in t.
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Inversions and cospin

Stanton-White correspondence maps t to T such that
5(T) = e(t) For example,

.o <|z|s| , [11112] | [4]5] | )

1 1 0 0O 3 1 1

has e(T) = 7 and is mapped to

fli=t

1

of cospin 7.
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Recent progress

@ The generalized inversion number e(t) has been extended
to arbitrary r-tuples of tableaux
[Schilling-Shimozono-White, Adv. Applied Math. 30 (2003)
258-272]

@ Another version working with tuples of skew tableaux has
been found by Haglund,Haiman, and Loehr [ J. Amer.
Math. Soc. 18 (2005), 735-761]

@ It allowed these authors to prove the Schur positivity of
Macdonald polynomials H,(x; g, t) by expressing them as
N[g~, {] linear combination of special LLT polynomials

@ These special polynomials are g-analogues of products of
ribbon Schur functions

@ The proof uses quasi-symmetric functions

@ This suggests connections with noncommutative
symmetric functions and combinatorial Hopf algebras
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Macdonald J functions and unicellular LLT-polynomials

@ Haglund and Wilson [arXiv:1701.05622]: Macdonald’s
Ju(x; g, t) in terms of the quasi-symmetric chromatic
polynomials [Shareshian-Wachs] of certain graphs

@ Here, these chromatic polynomials are symmetric

@ They are related to unicellular LLT-polynomials
(t-analogues of s given by tuples of skew partitions with a
single box) by

Xg(t,X) = (t —1)""LLTg(t, (t — 1)X)

[Carlsson and Mellit, J. Amer. Math. Soc. 31 (2018),
661-697]
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Dyck graphs

@ The graphs G are simple graphs with vertices labelled
1,...,n, such that if there is an edge (/,j) with i < j, then
all the (7', ") with i < i’ < j' < j are also edges of G.

@ The number of such graphs is the Catalan number c;,.

@ Encoding by partitions contained in a staircase

X | X 5
X | X 4
X 3
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@ A coloring is proper if ¢; # ¢; whenever (i,j) € E(G). We
denote by C(G) the set of proper colorings of G.

@ The chromatic quasi-symmetric function of G expands in
the M basis of QSym

Xa(t, X) = Y t560x xg, - Xg, = Y 15O Mg (X)),
ceC(G) c€ePC(G)

where PC(G) denotes the set of proper packed colorings,
ascg(c) is the number of edges (i < j) such that ¢; < ¢;,
and Ev(c) is the evaluation of c.
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Some combinatorial Hopf algebras

@ A={a; < a» < a3 < ---} totally ordered alphabet
@ WQSym: “Word Quasi-Symmetric functions”

MU:ZW

pack(w)=u

M.,y = aba+ aca+ ada+ bcb + bdb + cdc + - - -

@ Algebra:
MyM, = Z M,

u=vw
pack(v)=u’, pack(w)=u"’

@ Hopf algebra AM, = M, (A @ B) (ordinal sum)
@ Projection to QSym: M, (X) = M;(X)
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@ The Guay-Paquet Hopf algebra G: linear span of finite
simple undirected graphs with vertices labelled by the first
integers.

@ Product: G- H = GU H[n] where H[n] is H with labels
shifted by the number n of vertices of G.

@ Coproduct: G graph on n vertices, w € [r]", coloring of G;
G|w tensor product Gy ® - - - ® G, of the restrictions of G to
vertices colored 1,2,...,r.

A'G:= ) g, (1)

welr]?

@ The subspace D of G spanned by Dyck graphs is a Hopf
subalgebra.
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@ Given a Dyck graph G, define

Xa(t, A= > t=c(OM,(A) € WQSYm.
cePC(G)

@ Then, [Novelli, T., arXiv:1907.00077] G — Xg(A) is a
morphism of Hopf algebras from G to WQSym.

@ The (1 — t) transform and its inverse can be extended to
WQSym

@ Appliying it to X5, we find

(t—1)"Xg (z: ﬁ“) = > teealtIMy(A).

uePW,

The r.h.s. is therefore a noncommutative lift of the LLT
polynomial LLT .
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Xo o o= >, My
wePW(3)

Xo—o o) =tM21 + t Moo + tMy23 + t My32 + Mo14
+ Maio + May3 + t Moz + Msqo + Mspy

Xo o—o) =tMy12 + My21 + tMy23 + My32 + t My
+ tMz13 + Mooy + Mazq + t Mgyo + Mapy

X(o—o—0) =tMyzq + 2 My23 + t Mygz + t M2
+ tMaq3 + t Magq + t Maq2 + Maoy

= 3 My23 + 12 Myzp + 12 Moyz + t Mgy + t Mgy + Mgy

(=)
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Analogue of F-positivity

LLTg= > 156

min’GQ) (o)
o€6p

where G is the graph with n vertices and no edges.

LLTo o o) = P1os + P12 + D112 + 121 + o1p + 111,

LLTo—o o) = t 105 + t D1op + Pr1p + 1 1p + g2 + Dy14,
LLTo o) = tiog + Prop + t D112+ Prog + t Poro + Dy,
LLT 0—0—0) = 2 Pqog + tProp + tPr1o + t Dyog + tPogn + Peyq.
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Let Q(X;t) = (1 — )" “WQ(X; t).
Spin-unicellular LLT

Xg(t)=(1 —t)""LLTg((1 — ) X; 1)
Define

(1— ) "LLT(X;: 1) = > ca(hQ(X: 1)

pkEn

Conjecture (Novelli-T., in preparation)

The coefficient ci;(t) is given by an explicit statistic stg(m) on
set partitions of type u which are compatible with G, i.e. such
that the extremities of an edge are not in the same block:

- Z psta(m)

wely,

<
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For the graph G = o—o— o

LLTg = Qfqyqq + (82 + 262 + 20)Qpyq4 + (12 + 282 + 1) Qb

{1},{2,4},{3,5}} 1
{1,4},{2}, {3,5}} 2
{1,4},{2,5}, {3}} 3
{1,5},{2,4}, {3}} 2
13,42}, {3,5},{4}} 1
1}3.42,5}, {3}, {4}} 2
1}, {2,4}, {3}, {8}} 1
1,5}, {2}, {3}, {4}} 3
{{1,4}, {2}, {3}, {8}} 2
{1}, {2}, {3}, {4}, {83} ©

Thanks to the Haglund-Wilson formula, this would provide an
explicit expression of Macdonald polynomials in terms of
Hall-Littlewood functions.
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Conclusion

Bon anniversaire Bernard !
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