Polynomial Pell equations $P(x)^2 - (x^{2m} + ax + b) Q(x)^2 = 1$ and hyperelliptic curves

Tomasz JĘDRZEJAK University of Szczecin

The title equations are connected with Jacobians of hyperelliptic curves $C_{m,a,b}: y^2 = x^{2m} + ax + b$ defined over \mathbb{Q} . More precisely, these equations have a nontrivial solution if and only if the class of the divisor $\infty^+ - \infty^-$ is a torsion point in Jacobian $Jac(C_{m,a,b})$, where ∞^+ and ∞^- are two points at infinity in $C_{m,a,b}$.

We show that if ab = 0 then the title equations have nontrivial solutions (and we write explicit formulas). On the other hand, we prove that for any m > 1 there exists infinitely many pairs (a, b) such that our equations have no nontrivial solutions. Moreover, for m = 2, 3 for almost all (a, b) with $ab \neq 0$, these equations have no nontrivial solutions. We also give infinitely many explicit examples when nontrivial solution do not exist.