Rational Curves on Cubic Hypersurfaces over \mathbb{F}_q .

Adelina MÂNZĂŢEANU University of Bristol

Using a version of the Hardy – Littlewood circle method over $\mathbb{F}_q(t)$, one can count $\mathbb{F}_q(t)$ -points of bounded degree on a smooth cubic hypersurface $X \subset \mathbb{P}_{\mathbb{F}_q}^{n-1}$. Moreover, there is a correspondence between the number of $\mathbb{F}_q(t)$ -points of bounded height and the number of \mathbb{F}_q -points on the moduli space $\operatorname{Mor}_d(\mathbb{P}_{\mathbb{F}_q}^1, X)$, which parametrises the rational maps of degree d on X. In this talk I will show that for $n \geq 10$, and q and d large enough, there exists a rational curve defined over \mathbb{F}_q on X passing through two fixed points, one of which must not belong to the Hessian. Moreover, I will give an asymptotic formula for the number of such curves.