Expected Value of High Powers of the Trace of Frobenius of Biquadratic Curves over Finite Fields

Patrick MEISNER Tel Aviv University

The zeta function for a curve C over a finite field can be related to a unitary matrix Θ_C , called the frobenius. The number of \mathbb{F}_{q^n} -points is given by $q^n + 1 - q^{n/2} \operatorname{Tr}(\Theta_C^n)$. Katz and Sarnak showed that if we fix the genus, g, and let q tend to infinity then Θ_C is equidistributed amongst the conjugacy classes of USp(2g). Rudnick showed that if we fix q and let the genus, g, tend to infinity then the expected value of $\operatorname{Tr}(\Theta_C^n)$ of hyperelliptic curves tends to $\int_{USp(2g)} \operatorname{Tr} U^n dU$ for n < 4g.

Recently Bucur et al. showed that the expected value of $\text{Tr}(\Theta_C^n)$ of cyclic ℓ -covers tends to $\int_{U(2q)} \text{Tr} U^n dU$ for $n < 2g/(\ell - 1)$.

In this talk we discuss what happens in the case of biquadratic curves.