Polynomials and progression-free sets

Péter Pál PACH Budapest University of Technology and Economics

In this talk we will look at a new variant of the polynomial method which was first used to show that sets avoiding 3-term arithmetic progressions in groups like \mathbb{Z}_4^n and \mathbb{F}_q^n are exponentially small (compared to the size of the group). Namely, for \mathbb{Z}_4^n with Croot and Lev we improved the bound $\frac{4^n}{n(\log n)^{\varepsilon}}$ to 3.62^n and for \mathbb{Z}_3^n Ellenberg and Gijswijt the bound $\frac{3^n}{n^{1+\varepsilon}}$ to 2.756^n . Since then many interesting applications of this method were shown, for instance the solution of the Erdős-Szemerédi sunflower conjecture.