On the solutions of a Diophantine equation with power sums

Gökhan SOYDAN Uludağ University

This is joint work with Attila Bérczes, István Pink and Gamze Savaş. In this work, we are interested in positive integer solutions of the Diophantine equation

$$T_k(x) = y^n$$

where $T_k(x) = (x+1)^k + (x+2)^k + \dots + (2x)^k$.

We first provide upper bounds for n which depend on assertions describing the precise exponents of 2 and 3 appearing in the prime factorization of $T_k(x)$ and on the explicit solution of polynomial exponential congruences. Secondly, we show that the equation has no solutions in positive integer unknowns (x, y, k, n) with $2 \le x \le 13$, $y \ge 2$, $k \ge 1$, $n \ge 3$. To prove this, we combine several tools: Baker's method (in particular, sharp bounds for the linear combinations of logarithms of two algebraic numbers), polynomialexponential congruences and computational methods.