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A hypergroup structure on a C ∗-algebra

(A, ·, 1, ∗) is a separable unital C∗-algebra, A⊗ A denotes the
injective C∗-tensor square of A.

Definition
(A, δ, ε, ?) is a hypergroup structure on the C∗-algebra (A, ·, 1, ∗)
if:

(HS1) (A, δ, ε, ?) is a ?-coalgebra with a counit ε, that is,
δ : A→ A⊗ A and ε : A→ C, ? : A→ A, and

(δ ⊗ id) ◦ δ = (id ⊗ δ) ◦ δ,
(ε⊗ id) ◦ δ = (id ⊗ ε) ◦ δ = id ,

δ ◦ ? = Π ◦ (?⊗ ?) ◦ δ,
? ◦ ? = id ,

where Π : A⊗ A→ A⊗ A is the flip, Π(a1 ⊗ a2) = a2 ⊗ a1;
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Definition (cont.)

(HS2) δ : A→ A⊗ A is positive;

(HS3) the following identities hold:

(a · b)? = a? · b?, δ ◦ ∗ = (∗ ⊗ ∗) ◦ δ,

ε(a · b) = ε(a)ε(b), δ(1) = 1⊗ 1,

? ◦ ∗ = ∗ ◦ ?.
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Examples

Example
Let (A, ·, 1, ∗,∆, ε,S) be a compact matrix pseudogroup with A
being the involutive subalgebra generated by matrix elements of
the fundamental corepresentation.1

Let
a? = f−1/2 .S(a)∗ . f1/2.

Then (A,∆, ε, ?) is a hypergroup structure on (A, ·, 1, ∗).

1S. L. Woronowicz. Compact matrix pseudogroups. Commun. Math. Phys.,
111:613–665, 1987.
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Example
Let (A1, ·, 1, ∗,∆1, ε1,S1) and (A2, ·, 1, ∗,∆2, ε2,S2) be compact
matrix pseudogroups, and π : A1 → A2 a Hopf C∗-algebra
epimorphism. Let

A1/A2 = {a ∈ A1 : (id ⊗ π) ◦∆1(a) = a⊗ 1},

A2\A1 = {a ∈ A1 : (π ⊗ id) ◦∆1(a) = 1⊗ a},

A = A2\A1

⋂
A1/A2.

Define δ : A → A⊗alg A, ? : A → A, and ε : A → C by

δ = (id ⊗ ν2 ◦ π ⊗ id) ◦ (∆1 ⊗ id) ◦∆1,

a? = f−1/2 .S1(a)∗ . f1/2, ε(a) = ε1(a), a ∈ A,

where ν2 is the Haar measure on A2.

If Ainv = A‖·‖, then (Ainv, δ, ε, ?) is a hypergroup structure on
(Ainv, ·, 1, ∗).
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Unital Banach ∗-algebra srtucture on A◦

A′ denotes the set of all continuous linear functionals on the
C∗-algebra A.

For ξ, η ∈ A′, a ∈ A, set

(ξ · η)(a) = (ξ ⊗ η)δ(a)

ξ+(a) = ξ(a?),
(1)

‖ξ‖ = sup
‖a‖=1

|ξ(a)|. (2)

Proposition
Let the product, involution and the norm on A′ be given by (1)
and (2). Then (A′, ·, ε, +) is a unital Banach ∗-algebra.
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Haar Measure

Definition
A state ν ∈ A′ is called a Haar measure on (A, δ, ε, ?) if

(ν ⊗ id) ◦ δ(a) = (id ⊗ ν) ◦ δ(a) = ν(a)1 (3)

for all a ∈ A.

Definition
An element a ∈ A is called positive definite if

ξ · ξ+(a) ≥ 0 (4)

for all ξ ∈ A′.
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Existence of a Haar measure

Theorem
Let (A, δ, ε, ?) be a hypergroup structure on a C∗-algebra A.
Suppose that the linear space spanned by positive definite
elements is dense in A. Then there exists a Haar measure ν, it is
unique, and ν+ = ν.
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Compact quantum hypergroup

Definition
Let (A, δ, ε, ?) be a hypergroup structure on a C∗-algebra
(A, ·, 1, ∗). Then A = (A, ·, 1, ∗, δ, ε, ?, σt) a compact quantum
hypergroup if

(QH1) δ is completely positive and the linear span of positive definite
elements is dense in A;

(QH2) σt , t ∈ R, is a continuous one-parameter group of
automorphisms of A such that

(a) there exist dense subslgebras A0 ⊂ A and Ã0 ⊂ A⊗ A such
that the one-parameter groups σt and σt ⊗ id , id ⊗ σt can be
extended to complex one-parameter groups σz and σz ⊗ id ,
id ⊗ σz , z ∈ C, of automorphisms of the algebras A0 and Ã0

respectively;
(b) A0 is invariant with respect to ∗ and ?, and δ(A0) ⊂ Ã0;
(c) the following relations hold for all z ∈ C, a ∈ A0:

δ ◦ σz = (σz ⊗ σz) ◦ δ,
ν(σz(a)) = ν(a);
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Compact quantum hypergroup

Definition (cont.)

(d) there exists z0 ∈ C such that, for κ, defined by

κ = ∗ ◦ σz0 ◦ ?,

the Haar measure ν satisfies the following strong invariance
condition for all a, b ∈ A0:

(id ⊗ ν)
(
(κ⊗ id) ◦ δ(a) · (1⊗ b)

)
= (id ⊗ ν)

(
(1⊗ a) · δ(b)

)
;

(QH3) the Haar measure ν is faithful on A0.

Example
The two previous examples of hypergroup structures give examples
of compact quntum hypergroups.
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Theorem (Kalyuzhnyi’ 20012)
Let A = (A, ·, 1, ∗, δ, ε, ?, σt) be a compact quantum hypergroup
and B a unital C∗-subalgebra of A and P : A→ B a conditional
expectation. Let A0 and Ã0 be dense subalgebras of A and A⊗ A,
correspondingly, such that

P(A0) ⊂ A0,

(P ⊗ id)(Ã0) ⊂ Ã0, (id ⊗ P)(Ã0) ⊂ Ã0.

Let P satisfy the following:

(P ⊗ id) ◦ δ ◦ P = (P ⊗ P) ◦ δ = (id ⊗ P) ◦ δ ◦ P,

P ◦ ? = ? ◦ P, P ◦ σz = σz ◦ P, ν ◦ P = ν.

Set
δ̃ = (P ⊗ P) ◦ δ.

Then (B, ·, 1, ∗, δ̃, ε, ?, σt) is a compact quantum hypergroup.

2A. A. Kalyuzhyi. Conditional expectations on quantum groups and new
examples of quantum hypergroups. MFAT, 2001, 7, No.4, 49–68.
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A realization theorem

Theorem
Let A be a commutative compact quantum hypergroup. Let Q
denote the spectrum of the commutative C∗-algebra, e stand for
ε. Then (Q, ∗, e, δ, ν) is a compact hypergroup.
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Convolution operators

Let A be a compact quantum hypergroup,

〈a, b〉 = ν(b∗a),

and Hν the completion of A to a Hilbert space w.r.t. ‖ · ‖ν .

Proposition
For a ∈ A0, define Ta : A0 → A0 and † : A0 → A0 by

Ta(x) = (id ⊗ ν)
(
(1⊗ a) · δ(x)

)
, a† = κ(a)∗.

Then

(a) for a ∈ A0, Ta : Hν → Hν is a Hilbert-Schmidt type operator;

(b) for x ∈ Hν , a ∈ A0,

‖Ta(x)‖ ≤ ‖a‖ ‖x‖ν , Ta(Hν) ⊂ A;

(c) T ∗a = Ta† .

(d) the set {Ta(b) : a, b ∈ A0} is total in Hν w.r.t. ‖ · ‖ν ;



Compact quantum
hypergroups

Yu. A. Chapovsky

A hypergroup structure
on a C∗-algebra

Definition

Examples

Unital Banach
∗-algebra srtucture
on A′

Existence of a Haar
measure

Compact quantum
hypergroups

Definition

Examples of compact
quantum hypergroups

A realization theorem

Convolution operators

Representations of
compact quantum
hypergroups

Definition

Properties of finite
dimensional
corepresentations

Coinvolutive
corepresentations

Main results

Convolution operators (cont.)

Proposition
The set R = {Ta(b) : a, b ∈ A0, a

† = a} is total in A with respect
to the C∗-norm.

Proposition
Let a ∈ A0 and a† = a. Let y = Ta(x) for some x ∈ Hν and

y =
∞∑
i=1

〈y , vλi 〉vλi

be the Fourier expansion of y with respect to an orthonormal set
of the eigen vectors vλi of the self-adjoint compact operator Ta,
where λi are corresponding eigen values, λi 6= 0. Then vλ ∈ A and
the series converges in the C∗-norm.
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Corepresentations of a coalgebra

Definition
Let A be a Banach space, and A = (A, δ, ε) a coalgebra. For a
Banach space V and a continuous linear map ι : V → A⊗ V ,
where A⊗ V is the Banach space completion of the algebraic
tensor product w.r.t. the injective cross-norm, (V , ι) is a
corepresentation of A if

(δ ⊗ id) ◦ ι = (id ⊗ ι) ◦ δ,

(ε⊗ id) ◦ ι = id ,

If dimV <∞, then (V , ι) is finite dimensional.
Two finite dimensional corepresentations (V1, ι1) and (V2, ι2) of a
coalgebra A are equivalent if there is an invertible operator
F : V1 → V2 such that

ι2 ◦ F = (id ⊗ F ) ◦ ι1.
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Corepresentations of a coalgebra (cont.)

Definition
For finite dimensional (V , ι) and a basis E = {ei}di=1 of V ,

ι(ei ) =
d∑

j=1

tij ⊗ ej , tij ∈ A,

and tij are matrix elements of (V , ι) w.r.t. the basis E .
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Corepresentations of a compact quantum
hypergroup

Definition
Let A = (A, ·, 1, ∗, δ, ε, ?, σt) be a compact quantum hypergroup.
Then (V , ι) is a corepresentation of A if (V , ι) is a
corepresentation of the coalgebra (A, δ, ε).
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Properties of finite dimensional corepresentations

Proposition
Let (V , ι) be a finite dimensional corepresentation of a compact
quantum hypergroup A. Then the matrix elements tij in any basis
of V are analytic w.r.t. the one-parameter group σt .

Theorem
Let (V p, ιp) and (V q, ιq) be finite dimensional irreducible
corepresentations of a compact quantum hypergroup A. Let tpij
and tqkl denote matrix elements of the corresponding
corepresentations. Then

ν(tpijκ(tqkl)) = 0 (5)

if either the corepresentations are not equivalent or i 6= l .
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Coinvolutive corepresentations

Let H be a Hilbert space with an inner product (·, ·) and (H, ι) a
corepresentation of a compact quantum hypergroup A.

Definition
A finite dimensional corepresentation (H, ι) of a compact quantum
hypergroup A is called a †-corepresentation if

d∑
i=1

(u, vi )bi =
d∑

i=1

(ui , v)a†i , (6)

for all u, v ∈ H, where ι(u) =
∑d

i=1 ai ⊗ ui , ι(v) =
∑d

i=1 bi ⊗ vi ,
ai , bi ∈ A, ui , vi ∈ H, and d = dim H.
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Properties

Proposition
Let tij , i , j = 1, . . . , d, be matrix elements of a finite dimensional
†-corepresentation (H, ι) with respect to an orthonormal in H.
Then

t†ij = tji .

Corollary
If the corepresentations (V p, ιp) and (V q, ιq) are irreducible
†-corepresentations, then

ν(tpij t
q
lk
∗
) = 0 (7)

if either the corepresentations are not equivalent or i 6= l .
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Properties (cont.)

Proposition
Let (H, ι) be a finite dimensional †-corepresentation of a compact
quantum hypergroup A. Then (H, ι) is a finite direct sum of
irreducible finite dimensional †-corepresentations, i.e. H = ⊕k

i=1Hi

and (Hi , ιi ) is an irreducible †-corepresentation with ιi = ι|Hi .
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Main results

Theorem
Let V be a Banach space, (V , ι) be an irreducible
corepresentation of a compact quantum hypergroup A. Then V is
finite dimensional.

Theorem
Let Q be the set of all finite dimensional irreducible nonequivalent
†-corepresentations (V q, ιq), q ∈ Q, of a compact quantum
hypergroup A and B = {tqij : q ∈ Q, i , j = 1, . . . , dq = dim V q} be
the set of all matrix elements of these corepresentations with
respect to some bases. Then the linear span of the set B is dense
in A with respect to the C∗-norm.

Corollary
Let B be defined as in the Theorem. Then the linear span of B is
total in Hν with respect to the L2-norm.
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