Compact quantum hypergroups

Yu. A. Chapovsky

Institute of Mathematics, Kiev, Ukraine

Operator algebras, Quantum groups and Tensor categories, Caen, 2012 Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

Outline

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition Properties of finite dimensional corepresentations Coinvolutive

Main results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A hypergroup structure on a C^* -algebra

 $(A, \cdot, 1, *)$ is a separable unital C^* -algebra, $A \otimes A$ denotes the injective C^* -tensor square of A.

Definition

 $(A, \delta, \epsilon, \star)$ is a hypergroup structure on the C*-algebra $(A, \cdot, 1, \star)$ if:

(HS₁) $(A, \delta, \epsilon, \star)$ is a \star -coalgebra with a counit ϵ , that is, $\delta : A \to A \otimes A$ and $\epsilon : A \to \mathbb{C}, \star : A \to A$, and

$$(\delta \otimes id) \circ \delta = (id \otimes \delta) \circ \delta,$$

$$(\epsilon \otimes id) \circ \delta = (id \otimes \epsilon) \circ \delta = id,$$

$$\delta \circ \star = \Pi \circ (\star \otimes \star) \circ \delta,$$

$$\star \circ \star = id,$$

where $\Pi : A \otimes A \rightarrow A \otimes A$ is the flip, $\Pi(a_1 \otimes a_2) = a_2 \otimes a_1$;

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition

Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Definition (cont.)

(HS₂) $\delta : A \to A \otimes A$ is positive; (HS₃) the following identities hold:

$$(a \cdot b)^* = a^* \cdot b^*, \qquad \delta \circ * = (* \otimes *) \circ \delta,$$

$$\epsilon(a \cdot b) = \epsilon(a)\epsilon(b), \qquad \delta(1) = 1 \otimes 1,$$

$$\star \circ * = * \circ \star.$$

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition

Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition

Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Examples

Example

Let $(A, \cdot, 1, *, \Delta, \epsilon, S)$ be a compact matrix pseudogroup with A being the involutive subalgebra generated by matrix elements of the fundamental corepresentation.¹

Let

$$a^* = f_{-1/2} \cdot S(a)^* \cdot f_{1/2}.$$

Then $(A, \Delta, \epsilon, \star)$ is a hypergroup structure on $(A, \cdot, 1, *)$.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition

Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Example

Let $(A_1, \cdot, 1, *, \Delta_1, \epsilon_1, S_1)$ and $(A_2, \cdot, 1, *, \Delta_2, \epsilon_2, S_2)$ be compact matrix pseudogroups, and $\pi : A_1 \to A_2$ a Hopf C^* -algebra epimorphism. Let

$$egin{aligned} \mathcal{A}_1/\mathcal{A}_2 &= \{ m{a} \in \mathcal{A}_1 : (m{id} \otimes \pi) \circ \Delta_1(m{a}) = m{a} \otimes 1 \}, \ \mathcal{A}_2 ackslash \mathcal{A}_1 &= \{ m{a} \in \mathcal{A}_1 : (\pi \otimes m{id}) \circ \Delta_1(m{a}) = \mathbf{1} \otimes m{a} \}, \ \mathcal{A} &= \mathcal{A}_2 ackslash \mathcal{A}_1 igcap \mathcal{A}_1 igcap \mathcal{A}_1/\mathcal{A}_2. \end{aligned}$$

Define $\delta: \mathcal{A} \to \mathcal{A} \otimes_{\mathrm{alg}} \mathcal{A}$, $\star: \mathcal{A} \to \mathcal{A}$, and $\epsilon: \mathcal{A} \to \mathbb{C}$ by

$$\begin{split} \delta &= (id \otimes \nu_2 \circ \pi \otimes id) \circ (\Delta_1 \otimes id) \circ \Delta_1, \\ a^\star &= f_{-1/2} \cdot S_1(a)^* \cdot f_{1/2}, \qquad \epsilon(a) = \epsilon_1(a), \qquad a \in \mathcal{A}, \end{split}$$

where ν_2 is the Haar measure on A_2 . If $A^{\text{inv}} = \overline{A}^{\|\cdot\|}$, then $(A^{\text{inv}}, \delta, \epsilon, \star)$ is a hypergroup structure on $(A^{\text{inv}}, \cdot, 1, *)$. Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C*-algebra

Definition

Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups A realization theorem

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Unital Banach *-algebra srtucture on A°

A' denotes the set of all continuous linear functionals on the C^* -algebra A.

For $\xi, \eta \in A'$, $a \in A$, set $(\xi \cdot \eta)(a) = (\xi \otimes \eta)\delta(a)$ $\xi^+(a) = \overline{\xi(a^*)},$ $\|\xi\| = \sup_{\|a\|=1} |\xi(a)|.$

Proposition

Let the product, involution and the norm on A' be given by (1) and (2). Then $(A', \cdot, \epsilon, +)$ is a unital Banach *-algebra.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition

Unital Banach *-algebra srtucture

Existence of a Haar

Compact quantum hypergroups

(1)

(2)

Definition Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Haar Measure

Definition

A state $\nu \in A'$ is called a Haar measure on $(A, \delta, \epsilon, \star)$ if

$$(
u\otimes {\it id})\circ\delta({\it a})=({\it id}\otimes
u)\circ\delta({\it a})=
u({\it a})1$$

for all $a \in A$.

Definition

An element $a \in A$ is called positive definite if

$$\xi \cdot \xi^+(a) \ge 0$$

for all $\xi \in A'$.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition

(3)

(4)

Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main result

Existence of a Haar measure

Theorem

Let $(A, \delta, \epsilon, \star)$ be a hypergroup structure on a C*-algebra A. Suppose that the linear space spanned by positive definite elements is dense in A. Then there exists a Haar measure ν , it is unique, and $\nu^+ = \nu$. Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

Compact quantum hypergroup

Definition

Let $(A, \delta, \epsilon, \star)$ be a hypergroup structure on a C^* -algebra $(A, \cdot, 1, *)$. Then $\mathcal{A} = (A, \cdot, 1, *, \delta, \epsilon, \star, \sigma_t)$ a compact quantum hypergroup if

- (QH_1) δ is completely positive and the linear span of positive definite elements is dense in A;
- $(QH_2) \sigma_t, t \in \mathbb{R}$, is a continuous one-parameter group of automorphisms of A such that
 - (a) there exist dense subslgebras $A_0 \subset A$ and $\tilde{A}_0 \subset A \otimes A$ such that the one-parameter groups σ_t and $\sigma_t \otimes id$, $id \otimes \sigma_t$ can be extended to complex one-parameter groups σ_z and $\sigma_z \otimes id$, $id \otimes \sigma_z$, $z \in \mathbb{C}$, of automorphisms of the algebras A_0 and \tilde{A}_0 respectively;
 - (b) A_0 is invariant with respect to * and *, and $\delta(A_0) \subset \tilde{A}_0$;
 - (c) the following relations hold for all $z \in \mathbb{C}$, $a \in A_0$:

$$\delta \circ \sigma_z = (\sigma_z \otimes \sigma_z) \circ \delta,$$

$$\nu(\sigma_z(a)) = \nu(a);$$

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition

Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

Compact quantum hypergroup

Definition (cont.)

(d) there exists $z_0 \in \mathbb{C}$ such that, for κ , defined by

 $\kappa = * \circ \sigma_{z_0} \circ \star,$

the Haar measure ν satisfies the following strong invariance condition for all $a, b \in A_0$:

$$(\mathit{id}\otimes \nu)ig((\kappa\otimes \mathit{id})\circ\delta(\mathsf{a})\cdot(1\otimes b)ig)=(\mathit{id}\otimes \nu)ig((1\otimes \mathsf{a})\cdot\delta(b)ig)$$

 (QH_3) the Haar measure ν is faithful on A_0 .

Example

The two previous examples of hypergroup structures give examples of compact quntum hypergroups.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition

Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Theorem (Kalyuzhnyi' 2001²)

Let $\mathcal{A} = (A, \cdot, 1, *, \delta, \epsilon, \star, \sigma_t)$ be a compact quantum hypergroup and B a unital C^{*}-subalgebra of A and P: A \rightarrow B a conditional expectation. Let A_0 and \tilde{A}_0 be dense subalgebras of A and $A \otimes A$, correspondingly, such that

$$P(A_0) \subset A_0, \ (P \otimes id)(ilde{A}_0) \subset ilde{A}_0, \quad (id \otimes P)(ilde{A}_0) \subset ilde{A}_0.$$

Let P satisfy the following:

$$(P \otimes id) \circ \delta \circ P = (P \otimes P) \circ \delta = (id \otimes P) \circ \delta \circ P,$$

$$P \circ \star = \star \circ P, \qquad P \circ \sigma_z = \sigma_z \circ P, \qquad \nu \circ P = \nu.$$

Set

$$\tilde{\delta} = (P \otimes P) \circ \delta$$

Then $(B, \cdot, 1, *, \tilde{\delta}, \epsilon, \star, \sigma_t)$ is a compact quantum hypergroup.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition

Examples of compact quantum hypergroups

Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

²A. A. Kalyuzhyi. Conditional expectations on quantum groups and new examples of quantum hypergroups. MFAT, 2001, **7**, No.4, 49–68.

A realization theorem

Theorem

Let A be a commutative compact quantum hypergroup. Let Q denote the spectrum of the commutative C^* -algebra, e stand for ϵ . Then $(Q, *, e, \delta, \nu)$ is a compact hypergroup.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups

A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

Convolution operators

Let \mathcal{A} be a compact quantum hypergroup,

$$\langle a,b\rangle = \nu(b^*a),$$

and H_{ν} the completion of A to a Hilbert space w.r.t. $\|\cdot\|_{\nu}$. Proposition For $a \in A_0$, define $T_a : A_0 \to A_0$ and $\dagger : A_0 \to A_0$ by

$$T_{a}(x) = (id \otimes \nu) ((1 \otimes a) \cdot \delta(x)), \qquad a^{\dagger} = \kappa(a)^{*}.$$

Then

(a) for $a \in A_0$, $T_a : H_{\nu} \to H_{\nu}$ is a Hilbert-Schmidt type operator; (b) for $x \in H_{\nu}$, $a \in A_0$,

$$\|T_a(x)\| \leq \|a\| \|x\|_{\nu}, \qquad T_a(H_{\nu}) \subset A;$$

(c) $T_a^* = T_{a^{\dagger}}$. (d) the set $\{T_a(b) : a, b \in A_0\}$ is total in H_{ν} w.r.t. $\|\cdot\|_{\nu}$; Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition

quantum hypergroups A realization theorem

Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Convolution operators (cont.)

Proposition

The set $R = \{T_a(b) : a, b \in A_0, a^{\dagger} = a\}$ is total in A with respect to the C^{*}-norm.

Proposition

Let $a \in A_0$ and $a^{\dagger} = a$. Let $y = T_a(x)$ for some $x \in H_{\nu}$ and

$$y = \sum_{i=1}^{\infty} \langle y, v^{\lambda_i}
angle v^{\lambda_i}$$

be the Fourier expansion of y with respect to an orthonormal set of the eigen vectors v^{λ_i} of the self-adjoint compact operator T_a , where λ_i are corresponding eigen values, $\lambda_i \neq 0$. Then $v^{\lambda} \in A$ and the series converges in the C^{*}-norm. Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition

Examples of compact quantum hypergroups A realization theorem

Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Corepresentations of a coalgebra

Definition

Let A be a Banach space, and $\mathcal{A} = (A, \delta, \epsilon)$ a coalgebra. For a Banach space V and a continuous linear map $\iota : V \to A \otimes V$, where $A \otimes V$ is the Banach space completion of the algebraic tensor product w.r.t. the injective cross-norm, (V, ι) is a corepresentation of \mathcal{A} if

$$(\delta \otimes id) \circ \iota = (id \otimes \iota) \circ \delta,$$

 $(\epsilon \otimes id) \circ \iota = id,$

If dim $V < \infty$, then (V, ι) is finite dimensional. Two finite dimensional corepresentations (V_1, ι_1) and (V_2, ι_2) of a coalgebra \mathcal{A} are equivalent if there is an invertible operator $F : V_1 \to V_2$ such that

$$\iota_2 \circ F = (id \otimes F) \circ \iota_1.$$

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compac quantum hypergroup

A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Corepresentations of a coalgebra (cont.)

Definition

For finite dimensional (V, ι) and a basis $\mathcal{E} = \{e_i\}_{i=1}^d$ of V,

$$\iota(e_i) = \sum_{j=1}^d t_{ij} \otimes e_j, \qquad t_{ij} \in A_i$$

and t_{ij} are matrix elements of (V, ι) w.r.t. the basis \mathcal{E} .

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of con

A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへの

Corepresentations of a compact quantum hypergroup

Definition

Let $\mathcal{A} = (A, \cdot, 1, *, \delta, \epsilon, \star, \sigma_t)$ be a compact quantum hypergroup. Then (V, ι) is a corepresentation of \mathcal{A} if (V, ι) is a corepresentation of the coalgebra (A, δ, ϵ) . Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition

Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations Coinvolutive corepresentations

Main results

Properties of finite dimensional corepresentations

Proposition

Let (V, ι) be a finite dimensional corepresentation of a compact quantum hypergroup \mathcal{A} . Then the matrix elements t_{ij} in any basis of V are analytic w.r.t. the one-parameter group σ_t .

Theorem

Let (V^{p}, ι^{p}) and (V^{q}, ι^{q}) be finite dimensional irreducible corepresentations of a compact quantum hypergroup \mathcal{A} . Let t_{ij}^{p} and t_{kl}^{q} denote matrix elements of the corresponding corepresentations. Then

$$\nu(t^{p}_{ij}\kappa(t^{q}_{kl}))=0$$

if either the corepresentations are not equivalent or $i \neq I$.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups A realization theorem

Representations of compact quantum hypergroups

Definition

(5)

Properties of finite dimensional corepresentations

Coinvolutive corepresentations

Main results

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Coinvolutive corepresentations

Let *H* be a Hilbert space with an inner product (\cdot, \cdot) and (H, ι) a corepresentation of a compact quantum hypergroup *A*.

Definition

A finite dimensional corepresentation (H, ι) of a compact quantum hypergroup \mathcal{A} is called a [†]-corepresentation if

$$\sum_{i=1}^{d} (u, v_i) b_i = \sum_{i=1}^{d} (u_i, v) a_i^{\dagger}, \qquad (6)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for all $u, v \in H$, where $\iota(u) = \sum_{i=1}^{d} a_i \otimes u_i$, $\iota(v) = \sum_{i=1}^{d} b_i \otimes v_i$, $a_i, b_i \in A$, $u_i, v_i \in H$, and $d = \dim H$.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition Properties of finite dimensional corepresentations

Coinvolutive corepresentations

Properties

Proposition

Let t_{ij} , i, j = 1, ..., d, be matrix elements of a finite dimensional [†]-corepresentation (H, ι) with respect to an orthonormal in H. Then

$$t_{ij}^{\dagger}=t_{ji}.$$

Corollary

If the corepresentations (V^p, ι^p) and (V^q, ι^q) are irreducible [†]-corepresentations, then

$$\nu(t^{\rho}_{ij}t^{q\,*}_{lk})=0$$

if either the corepresentations are not equivalent or $i \neq I$.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition

Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations

Coinvolutive corepresentations

Main results

(7)

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Properties (cont.)

Proposition

Let (H, ι) be a finite dimensional [†]-corepresentation of a compact quantum hypergroup \mathcal{A} . Then (H, ι) is a finite direct sum of irreducible finite dimensional [†]-corepresentations, i.e. $H = \bigoplus_{i=1}^{k} H_i$ and (H_i, ι_i) is an irreducible [†]-corepresentation with $\iota_i = \iota|_{H_i}$. Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition

Properties of finite dimensional corepresentations

Coinvolutive corepresentations

Main results

Main results

Theorem

Let V be a Banach space, (V, ι) be an irreducible corepresentation of a compact quantum hypergroup A. Then V is finite dimensional.

Theorem

Let Q be the set of all finite dimensional irreducible nonequivalent [†]-corepresentations (V^q, ι^q) , $q \in Q$, of a compact quantum hypergroup \mathcal{A} and $\mathcal{B} = \{t_{ij}^q : q \in Q, i, j = 1, ..., d_q = \dim V^q\}$ be the set of all matrix elements of these corepresentations with respect to some bases. Then the linear span of the set \mathcal{B} is dense in \mathcal{A} with respect to the C^* -norm.

Corollary

Let \mathcal{B} be defined as in the Theorem. Then the linear span of \mathcal{B} is total in H_{ν} with respect to the L₂-norm.

Compact quantum hypergroups

Yu. A. Chapovsky

A hypergroup structure on a C^* -algebra

Definition Examples Unital Banach *-algebra srtucture on A'

Existence of a Haar measure

Compact quantum hypergroups

Definition Examples of compact quantum hypergroups A realization theorem Convolution operators

Representations of compact quantum hypergroups

Definition Properties of finite dimensional corepresentations Coinvolutive corepresentations