Examples Kac algebras and subfactors

Marie-Claude DAVID

Université Paris-Sud (Orsay)

Conférence en l'honneur de Léonid Vainerman 22 mars 2012

History

Kac algebras and subfactors

Intermediates factors and co-idalgebras

Exploration of Kac algebras KD(n) (work with Nicolas M. Thiéry)

Kac algebras and subfactors

- ► Kac algebras : The theory of Kac algebras providies a unified framework for both group algebras and their duals.
 - G. Kac (1960) : *Ring groups*

Finite dimensional example

Kac, Paljutkin (1966): KP de dim 8

- Leonid worked with George Kac from 1968 until his sudden death in 1978.
- M. Enock et J.-M. Schwartz: from 1970 to book in 1992
- ► Subfactors : A playground for Kac algebras
 - V. Jones Index for subfactors (1983)
 - D.Bisch (1992): A note on intermediate subfactors.

Irreducible inclusion of depth 2, quantum groups

- A. Ocneanu 199...
 - T. Yamanouchi (1993): Outer action of an fd Kac alg. on R.
 - finite index: Szymanski, Longo, (1994) MCD. (1996)
 - general case : Enock et Nest
- ► Sano (1996), MCD (1998) :

Tensorial product, bicrossed product and bicommutative square.

▶ M. Isuki, H. Kosaki : **Kac algebras** arising from composition of subfactors (2002).

$$G = H.K$$
 and $R^H \subset R \rtimes K$ prof 2

a lot of examples (dim \leq 24) and classification

Some examples

▶ Y. Sekine : An example of finite dimensional Kac algebras of Kac-Paljutkin type (1996).

► Twisting of group algebras

- Twisted coproduct
 - Enock, Vainerman (1996): KP, KD(3) (dim 12)
 - Vainerman, Nikshych (1998) : KD(n) et KQ(n) de dim 4n
- Twisted product :
 - A. Masuoka : Cocycle deformations and Galois objects (2000). A_{4m} , B_{4m}

C* quantum groupoids for reducible inclusions

- Weak Kac Algebras , weak Hopf algebras
 - Yamanouchi (1994)
 - Böhm, Nill et Szlachányi (1998)
 - Vainerman, Nikshych (1998)
- Finite index reducible inclusion of depth 2 and finite dimensional C* quantum groupoids
 - D. Nikshych et L. Vainerman: A characterisation of depth 2 subfactors of II₁ factors (2000)

Examples

3 quantum groupoids for the 3 inclusions of depth 2 and index 4 a quantum groupoid of dimension 13 (see also Böhm,Szlachányi (1996))

• MCD (2005) : autodualité de la structure de *C**-groupoïde quantique des algèbres de Temperley-Lieb, action d'un *C**-groupoïde quantique sur *R* (D. Nikshych).

Type II_1 hyperfinite factor (Murray-von Neumann 1937)

The type II_1 hyperfinite factor is a von Neumann algebra, i.e. a weakly closed operator algebra ...

The type II_1 hyperfinite factor by Leonid (according to Sébastien's slide)

It is the von Neumann algebra of an ICC amenable group.

- $\mathbb{C}\Gamma = Vect\{\lambda_g|g \in \Gamma\}$ (Let Γ a countable group)
- $L(\Gamma)$ is the weak closure of $\mathbb{C}\Gamma$ acting on $l^2(\Gamma)$.
- $L(\Gamma)$ is a factor iff $\forall h \neq e \mid \{ghg^{-1}|g \in \Gamma\}| = +\infty$
- $\tau(x) = \langle \delta_e, x \delta_e \rangle$ is a trace.
- ICC groups : S_{∞} , \mathbb{F}_n $(n \ge 2)$, ...

• The type II_1 hyperfinite factor R is an infinite dimensional algebra reminiscent of $L^{\infty}(X,\mu)$ and $M_n(\mathbb{C})$

Intermediates factors and co-idalgebras

- Properties of R:
 - hyperfini : $R = \bigcup_{n>1} M_{2^n}(\mathbb{C})$
 - facteur : $R' \cap R = Z(R) = \mathbb{C}$
 - type //1 : finite normal faithful normalised trace (tr(xy) = tr(yx)) such that $tr(\mathcal{P}) = [0; 1]$. For $(x, y \in R)$, $\langle x, y \rangle = tr(y^*x)$ is a scalar product.
- $L^2(R, tr)$ est l'espace de Hilbert complété de $(R, \langle ., . \rangle)$:

$$R \stackrel{\Lambda}{\hookrightarrow} L^2(R, tr)$$

• $L^{\infty}(X,\mu)$ acts on the left on $L^{2}(X,\mu)$ by multiplication :

$$M_f: L^2(X,\mu) \rightarrow L^2(X,\mu)$$

 $g \mapsto fg$

• R acts on the left on $L^2(R, tr)$ by multiplication :

$$y\Lambda(x) = \Lambda(yx) \quad (x \in R, y \in R)$$

Inclusions of type II_1 factors (Jones 83)

Let $N_0 \subset N_1$ a finite index inclusion of type II_1 hyperfinite factors and tr the trace of N_1 .

- Examples : $R^G \subset R$ or, for K Kac alg. $R^K \subset R$
- Jones projection of $N_0 \subset N_1$: orthogonal projection $f_1 : L^2(N_1, tr)$ on $L^2(N_0)$

$$N_0 = \{f_1\}' \cap N_1$$

Ex :
$$f_1 = \sum_{g \in G} \frac{1}{|G|} u_g$$

- Basic construction : factor $N_2 = \langle N_1, f_1 \rangle$ with the trace : $tr(f_1x) = \tau tr(x)$ $(x \in M_1)$ with $\tau^{-1} = [N_1 : N_0]$ index of the subfactor.
- With the basic construction again, we get the Jones tower :

$$N_0 \subset N_1 \stackrel{f_1}{\subset} N_2 \stackrel{f_2}{\subset} N_3 \subset \cdots$$

Depth 2 irreducible subfactor (finite index)

Intermediates factors and co-idalgebras

▶ An invariant of the inclusion is the **derived tower**

$$N_0' \cap N_1 \subset N_0' \cap N_2 \stackrel{f_2}{\subset} N_0' \cap N_3 \dots$$

- ▶ $N_0 \subset N_1$ depth 2 if $N'_0 \cap N_3 = \langle N'_0 \cap N_2, f_2 \rangle$
- group action :

Jones Tower : $N_0 = R^G \subset N_1 = R \subset N_2 = R \rtimes G$

Relative commutants :

 $N_0' \cap N_2 = \mathbb{C}[G]$ and $N_1' \cap N_3 = L^{\infty}(G)$ in $N_0' \cap N_3$.

- ► general depth 2 subfactor
 - irreducible : $N'_0 \cap N_1 = \mathbb{C}$
 - $A:=N_0'\cap N_2$ and $B:=N_1'\cap N_3$ finite dim. C^* -algebras
 - duality : $\langle a,b\rangle = [N_1:N_0]^2 tr(af_2f_1b) \rightarrow \mathsf{Kac} \mathsf{ algebras}$
 - *A* acts on *N*₁ :
 - $N_0 = N_1^A$, fixed points algebra under the action of A
 - $N_2 = N_1 \times A$

Kac algebras, twisting group algebras (Vainerman 98)

Definition

 $(K, \Delta, S, \varepsilon)$ is a finite dimensional C^* -Hopf-algebra or Kac algebra

• K is a finite dimensional C^* -algebra (m, *, 1):

Example: Algebras of the dihedral group and quaternion group

$$D_{2n} = \langle a, b | a^{2n} = 1, b^2 = 1, ba = a^{-1}b \rangle \rightarrow KD(n)$$

$$Q_n = \langle a, b | a^{2n} = 1, b^2 = a^n, ba = a^{-1}b \rangle \rightarrow KQ(n)$$

$$K = \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_3 \oplus \mathbb{C}e_4 \oplus M_2(\mathbb{C}) \oplus M_2(\mathbb{C}) \dots M_2(\mathbb{C})$$

- n-1 factors $M_2(\mathbb{C})$
- $\dim(K) = 4n$
- with the normalised canonical trace : $tr(e_i) = 1/4n$, $tr(e_{i,j}) = 1/2n$, tr(1) = 1

Definition (continued) : K is a co-algebra

Intermediates factors and co-idalgebras

• Δ a coassociative coproduct on K: homomorphism from K to $K \otimes K$, $(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta$

Standard coproduct, twisting the standard coproduct with a 2-(pseudo) cocycle

- For $\mathbb{C}D_{2n}$: $\Delta_s(\lambda(g)) = \lambda(g) \otimes \lambda(g)$
- For KD(n): $\Delta(x) = \Omega \Delta_s(x) \Omega^*$ with Ω 2-(pseudo) cocycle (a unitary) of $H \otimes H$ and $H = \{1, a^n, b, ba^n\}$.
- ε a counity : $\varepsilon(x) = \dim K \ tr(e_1 x) \ (x \in K)$ e_1 is Jones projection of the inclusion
- S an antipode, unique if Δ and ε are given.

$$m \circ (\mathsf{id} \otimes S) \circ \Delta = \varepsilon$$

Galois correspondence Intermediates subfactors \longleftrightarrow co-idalgebras

For an inclusion by group action
$$(N_0 = R^G \subset N_1 = R)$$
: $R^G \subset M \subset R \iff M = R^H \text{ avec } H < G$

Inclusion of depth 2 (Vainerman, Nikshych 2000)

$$N_1 \subset M_1 \subset N_2 \subset M_3 = \langle N_2, p \rangle \subset N_3 = N_2 \rtimes K$$

- Jones projections of intermediate subfactors (D. Bisch 1992)
- $I(p) = N'_1 \cap M_3 \subset K = N'_1 \cap N_3$
- $M_3 = N_2 \times I(p)$

Definition (co-idalgebra)

An involutive left coideal subalgebra I of K is a C^* -subalgebra I with unit such that $\Delta(I) \subset K \otimes I$

I(K), the lattice of the co-idalgebras of K

- Isomorphism lattice of intermediates factors of $N_2 \subset N_2 \rtimes K$ / lattice I(K)
- $I \subset J \iff p_I$ dominates p_J (lattice of Jones projections)
- Antiisomorphism of lattices δ from I(K) to I(K):

$$\delta(I) = S(I)' \cap \widehat{K} \text{ in } \widehat{K} \rtimes K$$
$$\dim I \times \dim \delta(I) = \dim K$$

For groups

$$\mathcal{I}(\mathbb{C}[G]) \to \mathcal{I}(L^\infty(G))$$

 $\mathbb{C}[H] \mapsto \text{invariant functions modulo } H$

- Self-duality of $K \implies I(K)$ is antiisomorphic to itsself.
- The Bratelli diagram of $I \subset K$ gives the principal graph of $R \subset R \rtimes \delta(I)$

The principal graph of an inclusion is an invariant in relation with the derived tower.

How to find co-idalgebras?

Intermediates factors and co-idalgebras

How to find subgroups in a group?

Propositions (Vainerman, Nikshych 2000)

- The restriction of ε to 1 is a positive linear form on 1.
- There exists an unique projection p_l (called Jones projection of I) in the center of I such that :

$$\forall x \in I \quad \varepsilon(x) = \dim I \ tr(p_I x) \quad et \quad Ip_I = \mathbb{C}p_I$$

- p_I dominates e₁.
- dim $I = [M_3 : N_2] = tr(p_I)^{-1}$ divides dim K.
- The right legs of $\Delta(p_I) = \sum_{k} S(x_k^*) \otimes x_k$ span I. Notation : $I = I(p_I)$
- $\Delta(p_I)(1 \otimes p_I) = p_I \otimes p_I$

A first example

KP is a deformation of $\mathbb{C}[D_4]$.

For bigger examples, I needed help!

Exploration of KD(n) with Nicolas M. Thiéry and MuPAD-Combinat (now Sage-Combinat). (to be published in Journal of Algebra and Its Applications)

Some general results for KD(n)

Proposition

- 3 co-idalgebras of dimension $2n : K_i := I(e_1 + e_i)$
- $K_2 := I(e_1 + e_2)$ is commutative; it is isomorphic to $L^{\infty}(D_n)$
- Co-idalgebras of dimension dividing 2n are in K_2 , K_3 or K_4 .

Proposition

- If d|n then $KD(d) \hookrightarrow KD(n)$ via $a \mapsto a^{n/d}$ (russian dolls)
- All co-idalgebras containing H arise this way.

Corollary

Intrinsic group of KD(n):

- if n odd, it is $H o J_0$
- if n even, it is $D_4 \rightarrow K_0$

Automorphisms, isomorphisms, self-duality

Theorem

KD(2m) is isomorphic to KQ(2m).

$$\phi: \begin{cases} a & \mapsto \frac{1}{4}(a-a^{-1})(a^m-a^{-m})(a^m-b) + a \\ b & \mapsto \frac{1}{2}(a^m+a^{-m})(b+i) - ia^m \end{cases}$$

Theorem

KD(2m+1) and KQ(2m+1) are self-dual. Isomorphism for KD(n):

$$a\mapsto \textit{n}(2\widehat{e_{1,1}^{n-1}}+\widehat{e_{2,2}^{1}}-\widehat{e_{1,1}^{1}}-\widehat{e_{1,2}^{n-1}}-\widehat{e_{2,1}^{n-1}}), \qquad b\mapsto 4n\widehat{e_{4}}$$

Theorem

Automorphism group of KD(n) and KQ(n): $\mathbb{Z}_{2n}^* \rtimes \mathbb{Z}_2$ $a \mapsto a^r$, $b \mapsto b$, pour $r \wedge 2n = 1$

$$a \mapsto a - \frac{1}{2}(a - a^{-1})(1 + a^n), \quad b \mapsto a^n b$$

Algorithm for computing (all) Kac algebra isomorphisms

- $K := K(\mathbb{C}[G], H, \Omega)$: Kac algebra obtained by twisting some $\mathbb{C}[G]$ via a 2-pseudo cocycle Ω of H < G
- K': any Kac algebra
- Problem : $K \approx K'$? Explicit isomorphism ϕ ?
- If yes : $K'' := K(K', \phi(H), \phi(\Omega^*)) \approx \mathbb{C}[G]$
- Algorithm :
 - Compute the intrinsic group H' of K'
 - Compute possible embeddings ρ of H into H'
 - Define $K'' := K(K', \rho(H), \rho(\Omega^*))$
 - Compute the intrinsic group G'' of K''
 - If $K'' = \mathbb{C}[G'']$, compute isomorphisms from G to G'' compatible with ρ .

The lattice of co-idalgebras of KD(n) (n prime)

Theorem

For n prime, the lattice is like this of KD(5):

The lattice of co-idalgebras of KD(n) (n odd)

Propositions

- $J_0 = \mathbb{C}[H]$
- Dim 2 : algebras of the 3 subgroups of H
- Dim 2n: K₂, K₃, K₄
- $K_2 = L^{\infty}(D_n)$
- K_3 and K_4 isomorphics but not Kac subalgebras $\Delta(e_1+e_4) \implies$ unités matricielles de K_4
- Co-idalgebras of dimension dividing n are in K₂
- Dim n: n co-idalgebras
 (constant functions modulo subgroups of order 2 of D_n)
- Dim 4 : n co-idalgebras
- For n prime, the list is complete.

The lattice of co-idalgebras of KD(n) (n odd)

More co-idalgebras in K_2 .

And the co-idalgebras $I_2 \subset I \subset K_4$ of dim 2k|2n? Idem in K_3 .

Conjecture

For n odd, the lattice is like that of KD(15):

true for $n \le 51$. dim KD(51) = 404. A week for the computer!

Co-idalgebras lattice of KD(6)

$$K_4 = KD(3)$$
 $K_3 = KQ(3)$ $K_2 = L^{\infty}(D_6)$ $K_0 = \mathbb{C}[D_4]$

The lattice of co-idalgebras of KD(2m)

Intermediates factors and co-idalgebras

Propositions

- $K_2 = L^{\infty}(D_n)$
- Intrinsic group algebra K₀ is generated by a^m and b and isomorphic à KD(2),
- K_4 , generated by a^2 and b, is isomorphic to KD(m) (russian dolls)
- Co-idalgebras de dim dividing 2n are in K2, K3, K4
- For m odd, K₃ is isomorphic to KQ(m). For every m, K_3 is the **self-dual** Kac algebra B_{4m} (A. Masuoka 2000). We show that it is not a twisted group algebra.

- The family KD(n) contains the others families $KP, A_{4n} = KD(n), B_{4n}, KQ(n)$
- It has a rich and various structure.
- Kac algebras and subfactors go together
- To apply theorems on examples gives life to theorems.

Intermediates factors and co-idalgebras

The exploration of examples needs computer.

Thank you, Leonid!