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Exploration of Kac algebras KD(n) (work with Nicolas M. Thiéry)
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History

Kac algebras and subfactors

» Kac algebras : The theory of Kac algebras providies a unified
framework for both group algebras and their duals.

e G. Kac (1960) : Ring groups
Finite dimensional example
Kac, Paljutkin (1966) : KP de dim 8

e Leonid worked with George Kac from 1968 until his sudden

death in 1978.

e M. Enock et J.-M. Schwartz : from 1970 to book in 1992
» Subfactors : A playground for Kac algebras

e V. Jones Index for subfactors (1983)

e D.Bisch (1992) : A note on intermediate subfactors.
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Irreducible inclusion of depth 2, quantum groups
» A. Ocneanu 199..

e T. Yamanouchi (1993) : Outer action of an fd Kac alg. on R.
e finite index : Szymanski, Longo, (1994) MCD. (1996)
e general case : Enock et Nest

» Sano (1996), MCD (1998) :

Tensorial product, bicrossed product and bicommutative square.

NANNE < NB

N N
NA c N C NxA =NBx(Ax,B)
N N
NxB C L =Nx(A®71B)

» M. Isuki, H. Kosaki : Kac algebras arising from composition of
subfactors (2002).

G=HK and RPTCRxK prof2

a lot of examples (dim < 24) and classification
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Some examples

» Y. Sekine : An example of finite dimensional Kac algebras of
Kac-Paljutkin type (1996).

» Twisting of group algebras
e Twisted coproduct

e Enock, Vainerman (1996) : KP, KD(3) (dim 12)
e Vainerman, Nikshych (1998) : KD(n) et KQ(n) de dim 4n

e Twisted product :
A. Masuoka : Cocycle deformations and Galois objects (2000).
A4my B4m

KL



History

C* quantum groupoids for reducible inclusions

e Weak Kac Algebras , weak Hopf algebras
e Yamanouchi (1994)
e BShm, Nill et Szlachanyi (1998)
e Vainerman, Nikshych (1998)
e Finite index reducible inclusion of depth 2 and finite
dimensional C* quantum groupoids
e D. Nikshych et L. Vainerman : A characterisation of depth 2
subfactors of II; factors (2000)

Examples

3 quantum groupoids for the 3 inclusions of depth 2 and index 4
a quantum groupoid of dimension 13 (see also B6hm,Szlachanyi (1996))

e MCD (2005) : autodualité de la structure de C*-groupoide
quantique des algebres de Temperley-Lieb,
action d'un C*-groupoide quantique sur R (D. Nikshych).



Histol Kac algebras and subfactors Intermediates factors and co-idalgebr Exploration of Kac algebras KD(n)

Type I hyperfinite factor (Murray-von Neumann 1937)

The type /I, hyperfinite factor is a von Neumann algebra, i.e. a
weakly closed operator algebra ...

The type Il hyperfinite factor by Leonid (according to Sébastien’s
slide)
It is the von Neumann algebra of an ICC amenable group.
o CI = Vect{\g|g €T} (Let T a countable group)
L(T) is the weak closure of CT acting on/?(I).
L(T) is a factor iff Vh # e |{ghg~llg € T}| = +
T(x) = (Je, xe) is a trace.
ICC groups : S, Fr (n>2), ...
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The type /1 hyperfinite factor R is an infinite dimensional

algebra reminiscent of L>°(X, u) and M,(C)
Properties of R :
e hyperfini : R = Ups1M.(C)
e facteur: RRNR=2Z(R)=C
e type /I : finite normal faithful normalised trace
(tr(xy) = tr(yx)) such that tr(P) = [0; 1].
For (x,y € R), (x,y) = tr(y*x) is a scalar product.
L?(R, tr) est I'espace de Hilbert complété de (R, (.,.)) :

R & 12(R,tr)
L>°(X, ;1) acts on the left on L2(X, 1) by multiplication :
Me: L2(X,p) — L2(X,p)
g = fg
R acts on the left on L2(R, tr) by multiplication :
yA(x) =Ayx) (x€R,y€R)
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Inclusions of type I} factors (Jones 83)

Let Mg C N a finite index inclusion of type /I hyperfinite factors
and tr the trace of Nj.

e Examples : R® C R or, for K Kac alg. RK ¢ R

e Jones projection of Ng C N :
orthogonal projection f; : L2(Ny, tr) on L%(Np)

Ny = {fl}/ N Ny

Ex:f =3 ,cc ﬁ”g

e Basic construction : factor N, = (Nq, 1) with the trace :
tr(fix) = 7tr(x) (x € My)
with 71 = [Ny : Np] index of the subfactor.

o With the basic construction again,we get the Jones tower :

fi f
No € Ny C Ny, C N3C---
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Depth 2 irreducible subfactor (finite index)

» An invariant of the inclusion is the derived tower
! ! fz !
NoﬂN1CN0ﬂN2CN0ﬂN3...

» No C Ny depth 2 if Nj N N3 = (NjN Na, f)
» group action :
Jones Tower : Ng=R® c y, =RC No=RxG
Relative commutants :
N§ N Ny = C[G] and Ny N N3 = L>°(G) in NjN Ns.
» general depth 2 subfactor
e irreducible : NN N; =C
e A:= NjN Nz and B := Nj N N3 finite dim. C*-algebras
e duality : (a, b) = [Ny : No)?tr(afufib)  — Kac algebras
e Aactson Ny :

o Ny = Nf‘, fixed points algebra under the action of A
° N2 = N1 X A
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Kac algebras, twisting group algebras (Vainerman 98)

Definition
(K, A, S,¢) is a finite dimensional C*-Hopf-algebra or Kac algebra

e K is a finite dimensional C*-algebra (m, %, 1) :

Example : Algebras of the dihedral group and quaternion group
Dsn = (a,bla®" =1,b> =1,ba=a"'b) — KD(n)
Qn=(a,bla® =1,b>=2a" ba=a"tb) — KQ(n)

K =Ce; ®Ce, ® Ces ® Cey & Mp(C) @& My(C) ... My(C)

e n— 1 factors M,(C)
e dim(K) =4n
e with the normalised canonical trace :
tr(ej)) =1/4n, tr(ej)=1/2n, tr(1)=1



Kac algebras and subfactors Intermediates factors and c

Definition (continued) : K is a co-algebra

e A a coassociative coproduct on K :
homomorphism from K to K ® K,
(A®id) o A = (id®A) o A
Standard coproduct, twisting the standard coproduct with a
2-(pseudo) cocycle
o For CD,, : As(Mg)) = Ag) ® Mg)
e For KD(n) : A(x) = QA(x)Q*
with Q 2-(pseudo) cocycle (a unitary) of H® H
and H = {1,a", b, ba"}.

e £ acounity : e(x) =dim K tr(eix) (x € K)
e1 is Jones projection of the inclusion

e S an antipode, unique if A and ¢ are given.

mo (d®S) o A = ¢
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Galois correspondence
Intermediates subfactors <— co-idalgebras

For an inclusion by group action (Ng = R® € N; = R) :
RC CMCR = M=R" avec H<G

Inclusion of depth 2 (Vainerman, Nikshych 2000)
Ny © My CNo & My—=(Nop) C Ng=NoxK

e Jones projections of intermediate subfactors (D. Bisch 1992)
e I(p)=N;NMsC K=Nj;NN;
° M3 =Ny x I(p)

Definition (co-idalgebra)
An involutive left coideal subalgebra | of K is a C*-subalgebra |
with unit such that A(l) C K® |
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I(K), the lattice of the co-idalgebras of K

e Isomorphism
lattice of intermediates factors of No C No x K / lattice /(K)
e | C J <= p; dominates p, (lattice of Jones projections)
« Antiisomorphism of lattices § from /(K) to I(K) :
() =SU)YnKinKxK
dim/ x dimé(/) = dim K

For groups

(Clel) — I(L>(G))
C[H] = invariant functions modulo H

e Self-duality of K = /(K) is antiisomorphic to itsself.

e The Bratelli diagram of | C K gives the principal graph of
R C Rx (1)
The principal graph of an inclusion is an invariant in relation
with the derived tower.
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Kac algebras and subfactors

How to find co-idalgebras?

How to find subgroups in a group ?

Propositions (Vainerman, Nikshych 2000)

The restriction of € to | is a positive linear form on |.

There exists an unique projection p; (called Jones projection
of 1) in the center of | such that :

Vx el e(x)=diml tr(p;x) et Ip;=Cp

p; dominates e;.

dim/ = [Ms : Np] = tr(p;)~! divides dim K.
The right legs of A(pr) = >, S(x;) @ xk span |.
Notation : | = I(p;)

A(p)(L® pr) = pr®pi



A first example
KP is a deformation of C[Dy].

{1} ordre 1 C
(ba®)  (b) (&) (ba) (ba®) ordre 2 h I A
NN XX
. . . ordre 4 b J Ja
N/ N
C[D4] ordre 8 KP

For bigger examples, | needed help!

Exploration of KD(n) with Nicolas M. Thiéry and
MuPAD-Combinat (now Sage-Combinat).

Exploration of Kac algebras KD(n)

dim 1
dim 2
dim 4

dim 8

(to be published in Journal of Algebra and Its Applications)
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Some general results for KD(n)
Proposition
e 3 co-idalgebras of dimension 2n : K; := I(e1 + €;)

o Ky :=I(e1 + &) is commutative; it is isomorphic to L>(D,)

o Co-idalgebras of dimension dividing 2n are in Ky, K3 or K.

Proposition

e If d|n then KD(d) < KD(n) via a— a"? (russian dolls)
o All co-idalgebras containing H arise this way.

Corollary

Intrinsic group of KD(n) :
e ifnodd, itis H - b
e ifneven, itis Dy - Ko
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Automorphisms, isomorphisms, self-duality

Theorem
KD(2m) is isomorphic to KQ(2m).
6 a — Ha—al)(am—a M(a™—b)+a
b — Lam+a ™)(b+1i)—ia™
Theorem

KD(2m + 1) and KQ(2m + 1) are self-dual.
Isomorphism for KD(n) :

arsn(2elt+el, —el, —eft — et b+ 4néy
Theorem
Automorphism group of KD(n) and KQ(n) : Z5, X Zs
ar—a’, b+ b, pourrA2n=1

a|—>a—%(a—a_1)(1+a”), b a"b
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Algorithm for computing (all) Kac algebra isomorphisms

K := K(C[G], H, Q) : Kac algebra obtained by twisting some
C[G] via a 2-pseudo cocycle Q of H < G

K

any Kac algebra

Problem : K ~ K’? Explicit isomorphism ¢ ?
If yes : K" := K(K', ¢(H), ¢(2*)) ~ C[G]
Algorithm :

Compute the intrinsic group H' of K’

Compute possible embeddings p of H into H’

Define K" := K(K’, p(H), p(2*))

Compute the intrinsic group G” of K”

If K" = C[G"], compute isomorphisms from G to G”
compatible with p.
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The lattice of co-idalgebras of KD(n) (n prime)

Theorem
For n prime, the lattice is like this of KD(5) :

dim 1
dim 2
dim 4
dim 5

dim 10

dim 20
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The lattice of co-idalgebras of KD(n) (n odd)

Propositions

o Jo =C[H]

e Dim 2 : algebras of the 3 subgroups of H

e Dim2n : Ky, K3, Ky

e Ky =L>(D,)

e K3 and K, isomorphics but not Kac subalgebras
A(e1 + es) = unités matricielles de Ky

o Co-idalgebras of dimension dividing n are in Ky

e Dim n : n co-idalgebras
( constant functions modulo subgroups of order 2 of D)

e Dim 4 : n co-idalgebras

e For n prime, the list is complete.
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The lattice of co-idalgebras of KD(n) (n odd)

More co-idalgebras in K>.
And the co-idalgebras I, C | C Ky of dim 2k|2n? Idem in Kj.

Conjecture
For n odd, the lattice is like that of KD(15) :

true for n < 51. dim KD(51) = 404. A week for the computer!
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Co-idalgebras lattice of KD(6)

dim 1

I I \\ h dim 2
“ L3 L1 L5 dim 3
i f | /
J oy J3 J Jl Jgo dim 4
3 “ ,
Kap Kax L . Ki Ko1 Koy Koz Koa Kos Ko dim 6

dim 8

Kz dim 12
dim 24

Ki=KD(3) K3=KQ(3) Ky=L>(Ds) Ko=C[Ds]
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The lattice of co-idalgebras of KD(2m)

Propositions

o Ko = L>(Dn)

o Intrinsic group algebra Ky is generated by a™ and b and
isomorphic a KD(2),

e Ky, generated by a° and b, is isomorphic to KD(m) (russian
dolls)

o Co-idalgebras de dim dividing 2n are in K>, K3, Ky

e For m odd, K3 is isomorphic to KQ(m).
For every m, K3 is the self-dual Kac algebra By, (A.
Masuoka 2000). We show that it is not a twisted group
algebra.
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The family KD(n) contains the others families

7

KP, Asn = KD(n), Ban, KQ(n))

It has a rich and various structure.

Kac algebras and subfactors go together

To apply theorems on examples gives life to theorems.

The exploration of examples needs computer.

Thank you, Leonid!



