Harmonic analysis on a locally compact hypergroup

A. A. Kalyuzhnyi

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition and examples of a l.c. hypergroup.

Harmonic analysis on a l. c. hypergroup

Historical remarks.

Definition of a l.c. hypergroup.

Definition (Yu. Chapovsky, A. Kalyuzhny, G. Podkolzin'¹) $(Q, \Delta, e, *, \mu)$ is a locally compact hypergroup if Q is a l. c. space, $*: Q \rightarrow Q$ is an involutive homeomorphism, $e^* = e \in Q$ and (H_1) $\Delta: \mathcal{C}_b(Q) \to \mathcal{C}_b(Q \times Q)$ is a \mathbb{C} -linear mapping such that (a) $(\Delta \times id) \circ \Delta = (id \times \Delta) \circ \Delta$; (b) Δ is positive: (c) $(\Delta 1)(p,q) = 1, \forall p,q \in Q$; (d) $\forall f, g \in \mathcal{C}_c(Q)$, we have $(1 \otimes f) \cdot (\Delta g) \in \mathcal{C}_c(Q \times Q)$ and $(f \otimes 1) \cdot (\Delta g) \in \mathcal{C}_{c}(Q \times Q).$ (H₂) If $\varepsilon(f) = f(e) : C_h(Q) \to \mathbb{C}$ then $(\varepsilon \times \mathrm{id}) \circ \Delta = (\mathrm{id} \times \varepsilon) \circ \Delta = \mathrm{id}.$ (H₃) The function \check{f} defined by $\check{f}(q) = f(q^*)$ for $f \in \mathcal{C}_b(Q)$ satisfies $(\Delta \check{f})(p,q) = (\Delta f)(q^*, p^*).$

¹Yu. Chapovsky, A. Kalyuzhny, G. Podkolzin. Harmonic analysis on a locally compact hypergroup. *Methods of Func. Anal. and Topol.* **17** (2011), 319–329.

 $({\it H}_4)$ There exists a positive measure μ on Q, ${\rm supp}\,\mu=Q$, such that

$$\int_{Q} (\Delta f)(p,q) g(q) d\mu(q) = \int_{Q} f(q) (\Delta g)(p^*,q) d\mu(q)$$

for all $f \in C_b(Q)$ and $g \in C_c(Q)$, or $f \in C_c(Q)$ and $g \in C_b(Q)$, $p \in Q$; such a measure μ will be called a *left Haar measure* on Q.

Example

Let G be a l. c. group, $(\Delta f)(p,q) = f(pq)$, $p,q \in G$, $q^* = q^{-1}$, e be a neutral element. Then G is a l. c. hypergroup.

Example

Let G be a l. c. group, H be a compact subgroup of G with a Haar measure μ_H normalized by the condition $\int_H d\mu_H(p) = 1$. Let $Q = H \setminus G/H = \{HgH : g \in G\}$ be the set of double cosets endowed with the factor topology. Let

$$(\Delta f)(g_1,g_2) = \int_H f(g_1hg_2)d\mu_H(h), \ f \in C_b(G), \ f(h_1gh_2) = f(g)$$

be a comultiplication, e = H, $(HgH)^* = Hg^{-1}H$. Than Q is a l. c. hypergroup.

There are examples of I. c. hypergroups associated with Sturm–Liouville eqaution, with orthogonal polynomials, and so on.

Hypergroups constructed from a conditional expectation

Let A be a C*-algebra and $B \subset A$ a C*-subalgebra of A. A bounded linear map $P: A \rightarrow B$ is called a conditional expectation if it is a projection onto and has norm 1.

Theorem

Let Q be a l. c. hypergroup. Let $A = C_b(Q)$, $A_0 = C_0(Q)$ and l be an ideal of A consisting of functions with compact support. Let $P: A \rightarrow A$ be a conditional expectation such that $B = P(A_0)$ is a C^* -algebra, $P(I) \subset I$, $P(\check{f}) = (P(f))$, and

 $((P \times id) \circ \Delta \circ P)(f) = ((id \times P) \circ \Delta \circ P)(f) = ((P \times P) \circ \Delta)(f),$ for all $f \in A$.

Denote by \tilde{Q} the spectrum of the commutative algebra B. For each $g \in B$, let

$$ilde{\Delta}(g) = ig((P imes P) \circ \Deltaig)(g).$$

If $\tilde{q} \in \tilde{Q}$ and $g \in B$, then we set $\tilde{q}^*(g) = \check{g}(q)$, $\tilde{e} = \varepsilon$, and let $\tilde{\mu}$ be defined by $\tilde{\mu} = \mu \circ P$. Then $(\tilde{Q}, *, \tilde{e}, \tilde{\Delta}, \tilde{\mu})$ is a locally compact hypergroup.

Hypergroups from a conditional expectation (cont.)

Definition

Let Q be a locally compact hypergroup. A conditional expectation P is called counital if $\varepsilon \circ P = \varepsilon$ on A.

Theorem

Let G be a l. c. group, $P: A \rightarrow A$ a conditional expectation satisfying the conditions of the previous theorem. Then there is a compact subgroup H of the group G and conditional expectations P_1, P_2 such that $P = P_2 \circ P_1$, where

$$(P_1f)(g) = \int_H \int_H f(h_1gh_2)d\mu_H(h_1)d\mu_H(h_2), \ f \in C_b(G)$$

and P_2 is counital.

Banach algebra $L_1(Q, \mu)$

Convoluton of functions $f,g \in C_c(Q)$ and involution f^* are defined by the equalities

$$(f*g)(q) = \int_Q f(p)\left(\Delta g\right)(p^*,q) d\mu\left(p\right), \quad f^*(q) = \overline{f}(q^*)\delta(q^*),$$

where $\delta(p)$ is a modular function of the hypergroup Q.

Theorem

The space $L_1(Q, \mu)$ is an involutive Banach algebra having an approximative identity.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A left Hilbert algebra structure

Definition

A linear subset \mathfrak{A} of a Hilbert space H is called a left Hilbert algebra if \mathfrak{A} is an associative algebra with involution \sharp and the following holds:

(i) the map $^{\sharp}: \mathfrak{A} \to \mathfrak{A}$ is a preclosed operator on H;

(ii)
$$(fg, h)_H = (g, f^{\sharp}h)_H$$
 for $f, g, h \in \mathfrak{A}$;

- (iii) for every $f \in \mathfrak{A}$, the operator $L_f : g \mapsto fg, g \in \mathfrak{A}$, can be extended to a continuous operator on H;
- (iv) $\mathfrak{A} \cdot \mathfrak{A}$ is dense in *H*.

Proposition

The algebra $\mathfrak{A} = C_c(Q)$ with multiplication *, involution * and the scalar product induced from the Hilbert space $H = L_2(Q, \mu)$ is a left Hilbert algebra.

Representations of a l.c. hypergroup

Definition

Let *H* be a Hilbert space. A weakly continuous mapping $\pi: Q \to \mathcal{L}(H)$ is called a representation of *Q* if: (i) $\pi(e) = I$; (ii) $\pi(p^*) = \pi(p)^*$; (iii) for every $\xi, \eta \in H$,

$$\Delta(\pi(\cdot)\xi,\eta)_{H}(p,q) = (\pi(p)\pi(q)\xi,\eta)_{H}.$$

Regular representations

For each $p \in Q$, let $L_p \colon C_c(Q) \to C_c(Q)$ and $R_p \colon C_c(Q) \to C_c(Q)$ be defined by

$$(L_p f)(q) = (\Delta f)(p^*,q), (R_p f)(q) = (\Delta f)(q,p) \,\delta^{\frac{1}{2}}(p).$$

Proposition

Let $H = L_2(Q, \mu)$. Then the mappings

$$\pi_L \colon p \mapsto L_p, \qquad \pi_R \colon p \mapsto R_p$$

are bounded representations of Q in H. Moreover, they separate points of Q.

Theorem

Bounded nondegenerate representations of the hypergroup Q are in one-to-one correspondence with nondegenerate representations of the Banach algebra $L_1(Q, \mu)$.

Definition

A continuous bounded function k on Q is called positive definite if $\forall n \in \mathbb{N}, \forall q_i \in Q, \forall \xi_i \in \mathbb{C}, i = 1, ..., n$ we have

$$\sum_{i,j=1}^n \xi_i \overline{\xi_j} \Delta k(q_i^*, q_j) \ge 0.$$

Definition

For two positive definite functions k_1, k_2 , we say that k_1 majorizes k_2 , written by $k_1 \succ k_2$, if $k_1 - k_2$ is positive definite. A positive definite function k is elementary if any positive definite function majorized by k is of the form λk , $\lambda \in [0, 1]$.

Theorem

A continuous function k on Q is bounded and positive definite if and only if there is a Hilbert space H_k , a bounded representation π_k of Q on H_k , and a vector $\xi_k \in H_k$ such that

$$k(q) = \left(\pi_k(q)\xi_k, \xi_k\right)_{H_k}, \qquad q \in Q.$$

The representation π_k is irreducible if and only if k is elementary.

Theorem

Every continuous function can be uniformly approximated on a compact set with linear combinations of elementary positive definite functions.

Theorem

Let \mathcal{L} (resp. \mathcal{R}) denote the von Neumann algebra generated by the operators L_p (resp. R_p), $p \in Q$, on $H = L_2(Q, \mu)$. Then $\mathcal{L}' = \mathcal{R}$ and $\mathcal{R}' = \mathcal{L}$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Plancherel theorem and invertion formula

Let \mathfrak{A} be the left Hilbert algebra of a l. c. hypergroup Q. Let $H = L_2(Q, \mu)$ and denote by $(L_f(g))(p) = \int_Q f(q)(L_pg)(q)d\mu(q)$, $f \in \mathfrak{A}, g \in H$. Let \mathcal{L} be the von Neumann algebra generated by $L_f, f \in \mathfrak{A}$ and φ the weight on \mathcal{L} corresponding to the scalar product in H, i.e., it is defined by $\varphi(L_g^*L_f) = (f,g)_H$, $f,g \in \mathfrak{A}$. Let H_{φ} be the Hilbert space obtained from \mathcal{L} and φ via the GNS-construction. The central decomposition theorem for von Neumann algebras applied to \mathcal{L} gives

$$H_{\varphi} = \int_{Z}^{\oplus} H_{\varphi}(z) \, d\rho(z), \ \mathcal{L} = \int_{Z}^{\oplus} \mathcal{L}(z) \, d\rho(z), \ \varphi = \int_{Z}^{\oplus} \varphi_{z} \, d\rho(z),$$

where Z is the spectrum of the center of \mathcal{L} .

Plancherel theorem (cont.)

Definition

The measure ρ on Z will be called a Plancherel measure. The Fourier transform \hat{f} of $f \in \mathfrak{A}$ is defined on Z by

$$\int_Q f(q) L_q(z) d\mu(q), \qquad z \in Z.$$

Theorem (L. Vainerman, G. Litvinov²) Let ρ is a Plancherel measure. Then

$$(f,g)_{H} = \int_{Z} \varphi_{z}(\hat{g}^{*}(z)\hat{f}(z)) d\rho(z), f(q) = \int_{Z} \varphi_{z}(L_{q}(z)^{*}\hat{f}(z)) d\rho(z),$$

and the Fourier transform[^] can be extended to a unitary operator $L_2(Q,\mu) \rightarrow H_{\varphi}$.

²L. Vainerman, G. Litvinov. Plancherel and invertion formulas for generalized translation operators. *Rep. Acad. Sci. USSR*, **257** (1981), 792–795.

Harmonic analysis on a cocommutative hypergroup

Definition A hypergroup Q is called *cocommutative* if

$$\Delta f(p,q) = \Delta f(q,p),$$

for all $f \in C_b(Q)$, $p, q \in Q$.

Definition

A function $\chi \in C_b(Q)$ is called a *character* of the hypergroup Q if $(\Delta \chi)(p,q) = \chi(p)\chi(q)$ for all $p,q \in Q$. A character χ is called *Hermitian* if $\chi(p^*) = \chi(p)$, $p \in Q$.

Let X_h be the space of bounded Hermitian characters endowed with the topology of the space of maximal ideals of the involutive Banach algebra $L_1(Q, \mu)$. Harmonic analysis on a cocommutative hypergroup (cont.)

Theorem

A continuous function k on Q is positive definite if and only if it can uniquely be represented as an integral,

$$k(p) = \int_{X_h} \chi(p) \, d\nu(\chi),$$

with respect to some nonnegative finite Borel measure ν on the space X_h .

Definition

For a function $f \in L_1(Q, \mu)$, the function $\hat{f} : X_h \to \mathbb{C}$ defined by

$$\hat{f}(\chi) = \int_{Q} f(p) \bar{\chi}(p) d\mu(p),$$

is called the Fourier transform of f.

Harmonic analysis on a cocommutative hypergroup (cont.)

Proposition

The Fourier transform defines a unitary operator of the space $L_2(Q, \mu)$ onto the space $L_2(\hat{Q}, \rho)$, where ρ is the Plancherel measure on \hat{X}_h , $\hat{Q} = \text{supp }\rho$, and the following inversion formula holds:

$$f(p) = \int_{\hat{Q}} \hat{f}(\chi) \chi(p) \, d
ho(\chi).$$

Theorem

Let Q be a cocommutative hypergroup satisfying the following properties:

- (i) the character ε defined in (H₂) belongs to \hat{Q} ;
- (ii) the product $\chi_1\chi_2$ of two characters $\chi_1, \chi_2 \in \hat{Q}$ is a positive definite function, and the support of the corresponding measure $\nu_{\chi_1\chi_2}$ is contained in \hat{Q} ;

Theorem (cont.)

(iii) the comultiplication $\hat{\Delta} \colon \mathcal{C}_b(\hat{Q}) o \mathcal{C}_b(\hat{Q} imes \hat{Q})$ defined by

$$\hat{\Delta}(F)(\chi_1,\chi_2) = \int_{\hat{Q}} F(\chi) \, d\nu_{\chi_1\chi_2}(\chi),$$

 $F \in \mathcal{C}_b(\hat{Q})$, satisfies axiom $(H_1)(d)$.

Then \hat{Q} is also a locally compact commutative hypergroup, a so-called dual hypergroup, that satisfies the conditions of this theorem, and the hypergroup \hat{Q} dual to \hat{Q} coincides with Q. The hypergroup dual to a compact hypergroup is a discrete hypergroup, the hypergroup dual to a discrete hypergroup is a compact hypergroup.

Historical remarks.

A family of generalized translation operators (Delsart' 1938³, B. Levitan⁴) is a coalgebra structure on a space of functions.

Commutative hypercomplex systems with compact and discrete bases (Yu. Berezansky, S. Krein' 1950⁵) form a class of generalized convolution algebras with a rich harmonic analysis.

³J. Delsart. Sur une extension de la formule de Taylor. *J. Math. Pure at Appl.*, **17** (1938), p. 213–231.

⁴B. Levitan B. Theory of generalized translation operators. M.: Nauka, 1973 (in Russian)

⁵Yu. Berezansky Yu., Krein S. Continual algebras. *Rep. Acad. Sci USSR. bf* 72 (1950), p.5–8 (in Russian). A DJS-hypergroup (C. Duncl' 1973 ⁶ R. Spector' 1975 ⁷ R. Jewett' 1975 ⁸) is a generalized convolution measure algebra on a l. c. space Q admitting a rich harmonic analysis. It turned out that compact and discret commutative DJS-hypergroups make a subclass of hypercomplex systems with compact and discrete bases.

⁷R. Spector. Apercu de la theorie des hypergroups. *Lect. Notes in Math.*, **497** (1975), 643 - 673.

⁸R. Jewett. Spaces with an abstract convolution of measures. Adv. in Math., **18** (1975), 1 - 101.

⁶C. Duncl. Structure hypergroups for measure algebras. *Pacific J. Math.*, **47** (1973), 413 – 425.

Unimodular hypercomplex systems with I. c. bases

(Yu. Berezansky, A. Kalyuzhny' 1982⁹) are more general than the unimodular DJS-hypergroups, although the axiomatics of such hypercomplex systems is cumbersome and can not be generalized to a nonunimodular case.

Compact and discrete hypercomplex systems without the positivity condition (L. Vainerman' 1984 ¹⁰) form a category with duality functor.

⁹Yu. Berezansky, A. Kalyuzhny. Harmonic analysis in hypercomples systems.
 Kluwer Acad. Publ., Dordecht–Boston–London, 1998, 483 p.
 ¹⁰L. Vainerman. Hypercomplex systems with compact and discrete bases.
 Rep. of Acad. Sci. USSR, **278** (1984), 16–20.