On the group of extensions for the bicrossed product construction for a locally compact group

Podkolzin G. B.

Historical remarks
Definitions
A description of the group $\text{Ext}(F, G)$
Construction of a cocycle for double crossed products of Lie groups
Examples of cocycle bicrossed products of Lie groups

Operator algebras, Quantum groups and Tensor categories, March 2012, Caen
Outline

1. Historical remarks

2. Definitions
 - Locally compact quantum groups.
 - A matched pair of Lie groups and the cocycle bicrossed product construction.

3. A description of the group $\text{Ext}(F, G)$
 - Example: group $\mathbb{Z}(3)$

4. Construction of a cocycle for double crossed products of Lie groups
 - Matched pairs of Lie algebras
 - Explicit formula for cocycles for a matched pair of Lie groups

5. Examples of cocycle bicrossed products of Lie groups
Historical remarks

A paper of G.I. Kac\(^1\) was the first one that considered the bicrossed construction and used it to construct Kac algebras. In this paper he gave a full description of the construction procedure for a matched pair of finite groups. It was shown by Kac that the bicrossed product construction can also be carried out with a pair of compatible 2-cocycles. Then this last construction was studied by S. Majid\(^2\) both in algebraic and analytic aspects. S. Baaj & G. Skandalis\(^3\) have defined a matched pair of Kac systems. In particular they considered a matched pair of locally compact groups.

Finaly the most general construction was given by S. Vaes & L. Vainerman\(^4\)

An important part in the bicrossed construction is an ability to construct compatible cocycles. It was found by Kac that the set of such cocycles forms a group. The structure of this group was studied by Kac, S. Baaj & G. Skandalis, S. Vaes & L. Vainerman\(^5\)

Locally compact quantum groups.

Definition (Kustermans, Vaes’ 2000\(^{6}\))

\(\mathcal{M} = (M, \Delta, \varphi, \psi)\) is a locally compact quantum group if

1. \(M\) is a von Neumann algebra;
2. \(\Delta : M \to M \otimes M\) is a normal unital \(*\)-homomorphism satisfying
 \[(\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta; \]
3. \(\varphi\) and \(\psi\) are normal semifinite faithful weights on \(M\), which are, respectively, left- and right-invariant, i.e.,
 \[(\text{id} \otimes \varphi) \circ \Delta(a) = \varphi(a) 1, \]
 \[(\psi \otimes \text{id}) \circ \Delta(b) = \psi(b) 1, \]
 where \(a \in M_{\varphi}^{+}\), \(b \in M_{\psi}^{+}\).

A matched pair of Lie groups

Definition
A pair of Lie groups, \((F, G)\), is called a \textit{matched pair} if there exists a Lie group \(K\) such that \(F < K\), \(G < K\), and \(F \cdot G = K\), \(F \cap G = \{e\}\).

Proposition
If \((F, G)\) is a matched pair of Lie groups, then there are a left action, \(\triangleright : G \times F \to F\), and a right action, \(\triangleleft : G \times F \to G\), defined by

\[g \cdot f = (g \triangleright f) \cdot (g \triangleleft f), \quad (g \triangleright f) \in F, \ (g \triangleleft f) \in G. \]

Notations
For \(a \in C^\infty(F)\), \(b \in C^\infty(G)\), \(f \in F\), \(g \in G\), define

\[(a \triangleleft g)(f) = a(g \triangleright f), \quad (f \triangleright b)(g) = b(g \triangleleft f). \]
Pairs of cocycles

Definition

A pair of C^∞-functions (u, v), where $u: G \times F \times F \to \mathbb{T}$ and $v: G \times G \times F \to \mathbb{T}$, is called a pair of cocycles for the matched pair (F, G) if the function $h_{u,v}: K \times K \times K \to \mathbb{T}$ defined by

$$h_{u,v}(k_1, k_2, k_3) = u(g_1, f_2, g_2 \triangleright f_3) \cdot v(g_1 \lhd f_2, g_2, f_3),$$

$k_i = f_i g_i$, $i = 1, 2, 3$, is a reduced nonhomogeneous 3-cocycle on K.

Two pairs of cocycles (u_1, v_1) and (u_2, v_2) are called equivalent, if

$$h_{u_1,v_1} h_{u_2,v_2}^{-1} = d r$$

for some C^∞-function $r: K \times K \to \mathbb{T}$ satisfying the condition

$$r(f_1 g_1, f_2 g_2) = r(g_1, f_2).$$
It is easy to check the following

Fact

Nonequivalent pairs of cocycles form a commutative group with respect to multiplication,

\[
[u_1, v_1] \cdot [u_2, v_2] = [u_1 \cdot u_2, v_1 \cdot v_2],
\]

which will be denoted by \(\text{Ext} (F, G) \).
The cocycle bicrossed product construction for Lie groups

Notations

Let \((F, G)\) be a matched pair of Lie groups and
\([u, v] \in \text{Ext} (F, G)\).

For \(u: G \times F \times F \to \mathbb{T}\), define \(u_G: F \times F \to C^\infty(G, \mathbb{T})\) by

\[u_G(f_1, f_2)(g) = u(g, f_1, f_2). \]

Notations

Define \(\mathcal{H} = L^2(F, \mu^l_F)\). For \(f \in F\), let \(l_f : \mathcal{H} \to \mathcal{H}\) be the left translation operator. Denote \(\mathcal{L}(F) = \{l_f \mid f \in F\}'' \subset B(\mathcal{H})\).
Proposition (G. I. Kac, S. Majid)

Define a von Neumann algebra,

\[M_u = L^\infty(G) \otimes \mathcal{L}(F), \]

\[(b_1 \otimes l_{f_1})(b_2 \otimes l_{f_2}) = b_1(f_1 \triangleright b_2)u_G(f_1, f_2) \otimes l_{f_1}l_{f_2}, \quad b_1, b_2 \in L^\infty(G), \quad l_{f_1}, l_{f_2} \in \mathcal{L}(F). \]

Identifying \(M_u \otimes M_u \simeq L^\infty(G \times G, \mathcal{L}(F) \otimes \mathcal{L}(F)) \) define \(\Delta_v : M_u \to M_u \otimes M_u \) by

\[\Delta_v(b \otimes l_f)(g_1, g_2) = b(g_1g_2)\nu(g_1, g_2, f) l_{g_2 \triangleright f} \otimes l_f, \]

and \(\Phi(b \otimes l_f) = \delta_{f,e} \int_G b(g) d\mu_G^l(g), \)

\(\Psi(b \otimes l_f) = \delta_{f,e} \int_G b(g) \mu_G^r(g). \)

Then \((M_u, \Delta_v, \Phi, \Psi) \) is a locally compact quantum group.
A description of $\text{Ext} (F, G)$

Proposition (Kac’ 1968, Baaj, Skandalis, Vaes’ 2005\(^7\))

There is a long exact sequence,

\[
\ldots \longrightarrow H^2(K, \mathbb{T}) \xrightarrow{\pi^2} H^2(F, \mathbb{T}) \oplus H^2(G, \mathbb{T}) \xrightarrow{\sigma} \text{Ext} (F, G) \\
\xrightarrow{i} H^3(K, \mathbb{T}) \xrightarrow{\pi^3} H^3(F, \mathbb{T}) \oplus H^3(G, \mathbb{T}) \longrightarrow \ldots
\]

Theorem
Let \(\pi^i : H^i(K, \mathbb{T}) \longrightarrow H^i(F, \mathbb{T}) \oplus H^i(G, \mathbb{T}) \),
\(i = 2, 3 \),
be defined by
\[
\pi^i = \pi^i_F + \pi^i_H,
\]
where \(\pi^i_F : H^i(K, \mathbb{T}) \rightarrow H^i(F, \mathbb{T}) \), \(\pi^i_G : H^i(K, \mathbb{T}) \rightarrow H^i(G, \mathbb{T}) \) are the restrictions. For
\[
[h_F + h_G] \in \left(H^2(F, \mathbb{T}) \oplus H^2(G, \mathbb{T}) \right) / \pi^2(H^2(K, \mathbb{T})),
\]
define
\[
\kappa(h_F + h_G)(k_1, k_2, k_3) = h_F^{-1}(g_1 \triangleright f_2, (g_1 \lhd f_2)g_2 \triangleright f_3) \cdot h_F(f_2, g_2 \triangleright f_3) \cdot h_G(g_1 \lhd f_2(g_2 \triangleright f_3), g_2 \lhd f_3) \cdot h_G^{-1}(g_1 \lhd f_2, g_2),
\]
\(k_i = f_ig_i, \quad i = 1, 2, 3. \)
Theorem (continued)

For $h_K \in \text{Ker } \pi^3$, let

$$\xi(h_K) = h_K \cdot (d \cdot r)^{-1},$$

where $r \in C^\infty(K \times K)$ is defined by

$$r(k_1, k_2) = h_K(f_1, g_1, f_2g_2) \cdot h_K^{-1}(f_1, g_1 \triangleright f_2, (g_1 \triangleleft f_2)g_2) \cdot h_K^{-1}(g_1, f_2, g_2) \cdot h_K(g_1, f_2, g_2),$$

$$k_i = f_i g_i, \quad i = 1, 2.$$

Then

$$\bar{\kappa} \oplus \xi : \left(\left(H^2(F, \mathbb{T}) \oplus H^2(G, \mathbb{T}) \right) / \text{Im } \pi^2 \right) \oplus \text{Ker } \pi^3 \longrightarrow \text{Ext } (F, G)$$

and is a group isomorphism.
Example

Let \(K = Z(3) \) be a group of upper triangular matrices (the Heisenberg group) \(K = \left\{ \begin{pmatrix} 1 & k_{12} & k_{13} \\ 0 & 1 & k_{23} \\ 0 & 0 & 1 \end{pmatrix} \right\} \),

\(F = \left\{ \begin{pmatrix} 1 & 0 & f_{13} \\ 0 & 1 & f_{23} \\ 0 & 0 & 1 \end{pmatrix} \right\}, \ G = \left\{ \begin{pmatrix} 1 & g_{12} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} \).

\(k_{ij}, : f_{ij}, g_{12} \in \mathbb{R} \).

Van Est isomorphism\(^8\) gives \(H^n(K, \mathbb{T}) \approx H^n(\mathfrak{k}, \mathbb{R}) \), \(H^n(G, \mathbb{T}) \approx H^n(\mathfrak{g}, \mathbb{R}) \), \(H^n(F, \mathbb{T}) \approx H^n(\mathfrak{f}, \mathbb{R}) \), where \(\mathfrak{k}, \mathfrak{g}, \) and \(\mathfrak{f} \) are the corresponding Lie algebras.

Example (continued)

It can be directly verified that

$$H^2(\mathfrak{k}, \mathbb{R}) = H^2(f, \mathbb{R}) \oplus H^2(g, \mathbb{R}).$$

And so $$\left(H^2(F, \mathbb{T}) \oplus H^2(G, \mathbb{T}) \right) / \text{Im} \pi^2 \equiv 0.$$ Moreover, $$\dim(H^3(\mathfrak{k}, \mathbb{R})) = 1,$$ the corresponding left-invariant differential 3-form on K is $\omega = dk_{12} \wedge dk_{23} \wedge dk_{13}$. Therefore a 3-coycle $h \in H^3(K, \mathbb{T})$ can be found as

$$h(k^1, k^2, k^3) = \exp(2i\pi \int_{\sigma(k^1,k^2,k^3)} \omega),$$

where $\sigma(k^1, k^2, k^3)(t_1, t_2, t_3) = \gamma_1(k^1 \gamma_{t_2} \gamma_{1-t_1-t_2} k^3)$ is the singular 3-simplex, $\gamma_t(k) = tk + (1 - t)e$ is curve in K and $\Delta^3 = \{(t_1, t_2, t_3) \in \mathbb{R}^3 \mid 0 \leq t_1, t_2, t_3 \leq 1, \ t_1 + t_2 + t_3 \leq 1\}$ is the standard 3-simplex.
And corresponding pairs of cocycles are

\[u(g^1, f^2, f^3) = \exp \left(2i\pi \alpha g^1_{12} \det \begin{vmatrix} f^2_{23} & f^2_{13} \\ f^3_{13} & f^3_{13} \end{vmatrix} \right), \]

\[v(g^1, g^2, f^3) = 1. \]
Matched pairs of Lie algebras

Definition
A pair \((\mathfrak{f}, \mathfrak{g})\) of Lie algebras is a matched pair (S. Majid), if there exists an algebra \(\mathfrak{k}\) such that \(\mathfrak{g}\) and \(\mathfrak{h}\) are Lie subalgebras of \(\mathfrak{k}\), \(\mathfrak{k} = \mathfrak{f} + \mathfrak{g}\) and \(\mathfrak{f} \cap \mathfrak{g} = \{0\}\).

Definition
A pair of linear functionals \((U, V)\), where \(U: \mathfrak{g} \otimes (\mathfrak{f} \wedge \mathfrak{f}) \to \mathbb{R}\)
\(V: (\mathfrak{g} \wedge \mathfrak{g}) \otimes \mathfrak{f} \to \mathbb{R}\) is called a pair of cocycles for the matched pair \((\mathfrak{f}, \mathfrak{g})\), if the linear functional \(F_{U,V}: \mathfrak{k} \wedge \mathfrak{k} \wedge \mathfrak{k} \to \mathbb{R}\), defined by

\[
F_{U,V}(A_1+X_1, A_2+X_2, A_3+X_3) = U(X_1; A_2, A_3) + U(X_2; A_3, A_1) + U(X_3; A_1, A_2) + V(X_1, X_2; A_3) + V(X_2, X_3; A_1) + V(X_3, X_1; A_2),
\]

\(A_i \in \mathfrak{f}, \ X_i \in \mathfrak{g}, \ i = 1, 2, 3,\) is an 3-cocycle on the algebra Lie \(\mathfrak{k}\).
Definition (continued)

Two pairs of cocycles (U_1, V_1) and (U_2, V_2) are called equivalent, if there exists a linear functional $R : \mathfrak{k} \wedge \mathfrak{k} \to \mathbb{R}$ such that

$$F_{U_1, V_1} - F_{U_2, V_2} = d R,$$

where $R(A_1, A_2) = R(X_1, X_2) = 0 \; \forall A_1, A_2 \in \mathfrak{f}, \; \forall X_1, X_2 \in \mathfrak{g}$. Here d is the differentiation in the complex of multilinear antisymmetric forms on \mathfrak{k}.

As in the case of a matched pair of Lie groups, the classes of equivalent pairs $[U, V]$ of cocycles on the matched pair of Lie algebras form an Abelian group,

$[U_1, V_1] + [U_2, V_2] = [U_1 + U_2, V_1 + V_2]$. Denote this group by $\text{Ext}(\mathfrak{f}, \mathfrak{g})$.
Lemma
Consider the maps $\lambda_{g_0} : K \to K$ and $\lambda_{f_0} : K \to K \ \forall f_0 \in F, \ \forall g_0 \in G$ defined by

$$\lambda_{f_0}(k) = (f_0 f) \cdot (g \triangleright f_0^{-1}), \quad \lambda_{g_0}(k) = (g_0 \triangleright f) \cdot (g g_0^{-1}); \quad k = fg.$$

And the map $\lambda_{k_0} : K \to K \ \lambda_{k_0} = \lambda_{f_0} \lambda_{g_0}, \ \forall k_0 = f_0g_0$. Then the map $\lambda : K \times K \to K$ is a left action of K on itself.

Definition
A vector field $\eta : K \to T(K), \ \eta_k \in T_k(K)$, on the K is called λ-invariant, if $\eta_{\lambda_{k_0}(k)} = (D\lambda_{k_0})_k \eta_k \ \forall k, k_0 \in K$, where $T(K)$ is a tangent bundle of K and $(D\lambda_{k_0})_k : T_k(K) \to T_{\lambda_{k_0}(k)}(K)$ is the derivative of λ_{k_0}.

Notations
λ-invariant vector fields on K form a Lie algebra $\tilde{\mathfrak{k}}$, isomorphic to \mathfrak{k}.
Explicit formula for cocycles for a matched pair of Lie groups

Theorem

Let \((F, G)\) be a matched pair of a connected, simply connected Lie groups, \((\mathfrak{f}, \mathfrak{g})\) a matched pair of the corresponding Lie algebras. Consider a \(\lambda\)-invariant differential form \(\omega_{U,V}\) on \(K\) corresponding to the pair of cocycles \([U, V] \in \text{Ext}(\mathfrak{f}, \mathfrak{g})\). There is a pair of singular 3-simplexes \(c^{2,1}(g_1, f_2, f_3)\) and \(c^{1,2}(g_1, g_2, f_3)\) on the group \(K\), the pair functions
\[
\tilde{u} : F \times F \times G \to \mathbb{R} \quad \text{and} \quad \tilde{v} : G \times G \times F \to \mathbb{R},
\]
\[
\tilde{u}(g_1, f_2, f_3) = \int_{c^{2,1}(g_1,f_2,f_3)} \omega_{U,V}, \quad \tilde{v}(g_1, g_2, f_3) = \int_{c^{1,2}(g_1,g_2,f_3)} \omega_{U,V},
\]
such that the pair of functions
\[
u(g_1, f_2, f_3) = \exp (2i\pi \tilde{u}(g_1, f_2, f_3)),
\]
\[
u(g_1, g_2, f_3) = \exp (2i\pi \tilde{v}(g_1, g_2, f_3))\]
define a group homomorphism \(\text{Int} : \text{Ext}(\mathfrak{f}, \mathfrak{g}) \to \text{Ext}(F, G)\),
\[
\text{Int}([U, V]) = [u, v].
\]
Example
Let $F = \mathbb{R}^2$, $G = \mathbb{R}^2$ be a matched pair of Lie groups. Then $K = FG = \mathbb{R}^4$ is an Abelian group. We will denote by $f(a, b) \in F$ and $g(x, y) \in G$, $a, b, x, y \in \mathbb{R}$. $\mathfrak{k} = \mathfrak{f} + \mathfrak{g}$ is the corresponding Lie algebra. A_1, A_2 form a basis in \mathfrak{f} and X_1, X_2 a basis in \mathfrak{g}. So non-equivalent pairs of cocycles are of the following form:

$$U(X_i; A_1, A_2) = \xi_i, \quad V(X_1, X_2; A_j) = \mu_j,$$

where $\xi_i, \mu_j \in \mathbb{R}$, $i, j = 1, 2$. The corresponding left-invariant forms on K are given by

$$\omega_{U, V} = \xi_1 da \wedge db \wedge dx + \xi_2 da \wedge db \wedge dy +$$

$$+ \mu_1 da \wedge dx \wedge dy + \mu_2 db \wedge dx \wedge dy.$$
Example (continued)

Proposition

The functions $u(g; f_1, f_2) = \exp \left(2i\pi (\xi_1 x + \xi_2 y) \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right)$, $v(g_1, g_2; f) = \exp \left(2i\pi (\mu_1 a + \mu_2 b) \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \right)$ give pairs of cocycles for the matched pair of the Lie groups (F, G).
On the group of extensions for the bicrossed product construction for a locally compact group

Podkolzin G. B.

Historical remarks

Definitions

A description of the group $\text{Ext}(F, G)$

Construction of a cocycle for double crossed products of Lie groups

Examples of cocycle bicrossed products of Lie groups

$F = \{ \text{\textquotedbl}ax + b\text{\textquotedbl}, \ G = \mathbb{R}^2 \text{ with nontrivial actions.} \}$

Example

Let

$F = \{ f(a, b) = \begin{pmatrix} 1 & b & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{pmatrix} \}, \ G = \{ g(x, y) = \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} \},$

$K = \{ k(a, b, x, y) = \begin{pmatrix} 1 & b & y \\ 0 & a & x \\ 0 & 0 & 1 \end{pmatrix} \},$ where

$a \in \mathbb{R} \setminus \{0\}, b, x, y \in \mathbb{R}$

Then the actions are defined as follows:

$g(x, y) \triangleright f(a, b) = f(a, b),$

$g(x, y) \lhd f(a, b) = g\left(\frac{x}{a}, y - \frac{x}{a}b\right) = \begin{pmatrix} 1 & 0 & y - \frac{x}{a}b \\ 0 & 1 & \frac{x}{a} \\ 0 & 0 & 1 \end{pmatrix}.$
Example (continued)

The corresponding left-invariant forms on K are

$$\omega^1_v = \frac{1}{a} \left(- \frac{b}{a} da + db \right) \wedge dx \wedge dy,$$

$$\omega^2_v = \frac{1}{a^2} da \wedge dx \wedge dy.$$

Proposition

Two pairs of cocycles for the matched pair of the groups (F, G) are defined as follow: $u^i = 1$, $i = 1, 2$, and

$$v^1(h_1, h_2; g) = \exp \left(2i\pi \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \frac{b}{a} \right),$$

$$v^2(h_1, h_2; g) = \exp \left(2i\pi \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \frac{a - 1}{a} \right),$$

where $h_i = h(x_i, y_i)$, $i = 1, 2$, and $g = g(a, b)$.