II₁ factors with a unique Cartan decomposition

Operator algebras, Quantum groups and Tensor categories

In honor of Leonid Vainerman

Caen, 2012

Stefaan Vaes*

* Supported by ERC Starting Grant VNALG-200749

< ∃ > < @ >

Collaboration with Leonid

- Extensions of locally compact quantum groups and the bicrossed product construction. Advances in Mathematics (2003).
- On low-dimensional locally compact quantum groups. Proceedings of the 2002 Strasbourg Conference, organized by Leonid.
- Car driving in a one-way street in Bonn ... in the wrong direction.

Congratulations and Happy Birthday !

The group measure space construction

Input: a countable group Γ and a probability measure preserving action $\Gamma \curvearrowright (X, \mu)$. Consider $\Gamma \curvearrowright L^{\infty}(X)$ by $(g \cdot F)(x) = F(g^{-1} \cdot x)$.

Output : the von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$.

- *M* is generated by a copy of $L^{\infty}(X)$ and unitaries $(u_g)_{g \in \Gamma}$.
- We have uguh = ugh and ugFug^{*} = g ⋅ F. Think of the semi-direct product of groups.

• *M* has a trace
$$\tau : M \to \mathbb{C}$$
 given by
 $\tau(Fu_g) = 0$ if $g \neq e$ and $\tau(F) = \int F d\mu$.

Main research theme

Classify crossed products $L^{\infty}(X) \rtimes \Gamma$ in terms of the group action data !

< ≣ ► < @ ►

Fix a probability measure preserving (pmp) action $\Gamma \curvearrowright (X, \mu)$.

- ► The subalgebra $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$ is maximal abelian if and only if $\Gamma \curvearrowright X$ is free : for all $g \neq e$ and for a.e. $x \in X$, we have $g \cdot x \neq x$.
- Assuming that Γ → X is free, we get that L[∞](X) × Γ is a factor if and only if Γ → X is ergodic : all Γ-invariant subsets of X have measure 0 or 1.
- We only consider free ergodic pmp actions $\Gamma \curvearrowright (X, \mu)$. Then, $L^{\infty}(X) \rtimes \Gamma$ is a **II**₁ factor.

Examples of free ergodic pmp actions

- ▶ Irrational rotation $\mathbb{Z} \curvearrowright \mathbb{T}$ given by $n \cdot z = \exp(2\pi i \alpha n) z$ for a fixed irrational number $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- ▶ Bernoulli action $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$ given by $(g \cdot x)_h = x_{hg}$.
- The action $SL(n,\mathbb{Z}) \curvearrowright \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.
- The action $\Gamma \curvearrowright G/\Lambda$ for lattices $\Gamma, \Lambda < G$.
- Certain profinite actions $\Gamma \curvearrowright \lim_{n \to \infty} \Gamma/\Gamma_n$ with $[\Gamma : \Gamma_n] < \infty$.

 \checkmark They give all rise to II₁ factors $L^{\infty}(X) \rtimes \Gamma$.

Cartan subalgebras

Definition

A Cartan subalgebra $A \subset M$ is a maximal abelian subalgebra whose normalizer $\mathcal{N}_M(A) = \{ u \in \mathcal{U}(M) \mid uAu^* = A \}$ generates M.

Examples :

- ▶ $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$ if $\Gamma \frown (X, \mu)$ is a free ergodic pmp action.
- L[∞](X) ⊂ L(R) if R is a countably infinite ergodic pmp equivalence relation on (X, μ).

The previous example corresponds to the orbit equivalence relation.

• Generic case : $L^{\infty}(X) \subset L_{\Omega}(\mathcal{R})$ with a scalar 2-cocycle Ω .

Conclusion

Uniqueness of Cartan subalgebras = reducing the classification of $L^{\infty}(X) \rtimes \Gamma$ to the classification of equivalence relations.

Connes' theorem (1975)

All amenable II_1 factors are isomorphic with the unique hyperfinite II_1 factor R.

- $L\Gamma \cong R$ for all amenable icc groups Γ .
- L[∞](X) ⋊ Γ ≅ R for all free ergodic pmp actions of an infinite amenable group Γ.

Connes-Feldman-Weiss (1981)

All amenable II_1 equivalence relations are isomorphic with the unique hyperfinite II_1 equivalence relation.

The hyperfinite II₁ factor R has a unique Cartan subalgebra up to conjugacy by an automorphism: if $A, B \subset R$ are Cartan, there exists $\alpha \in Aut(R)$ with $\alpha(A) = B$.

Connes-Jones, 1981 : II_1 factors with at least two Cartan subalgebras that are non-conjugate by an automorphism.

- Strongly ergodic actions $\Gamma \curvearrowright (X, \mu)$ such that $M = L^{\infty}(X) \rtimes \Gamma$ is McDuff, i.e. $M \cong M \overline{\otimes} R$.
- → Uniqueness of Cartan subalgebras seemed hopeless.

Voiculescu, 1995 : $L\mathbb{F}_n$, $2 \le n \le \infty$, has no Cartan subalgebra.

Ozawa-Popa, 2007 : the II₁ factor $M = L^{\infty}(\mathbb{Z}_p^2) \rtimes (\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}))$ has two non-conjugate Cartan subalgebras, namely $L^{\infty}(\mathbb{Z}_p^2)$ and $L(\mathbb{Z}^2)$.

Speelman-V, 2011 : II₁ factors with **many** Cartan subalgebras.

Theorem (Popa - V, 2011)

If $\mathbb{F}_n \curvearrowright (X, \mu)$ is an arbitrary free ergodic pmp action, then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \mathbb{F}_n$, up to unitary conjugacy.

Consider wreath product groups $H \wr \Gamma = H^{(\Gamma)} \rtimes \Gamma$.

Corollary, using Gaboriau's work

- ▶ If *H* is an abelian group and $n \neq m$, then we have $L(H \wr \mathbb{F}_n) \cong L(H \wr \mathbb{F}_m)$. Of course we need $H \neq \{e\}$.
- ▶ If $n \neq m$ and $\mathbb{F}_n \curvearrowright X$, $\mathbb{F}_m \curvearrowright Y$ are arbitrary free ergodic probability measure preserving actions, then $L^{\infty}(X) \rtimes \mathbb{F}_n \cong L^{\infty}(Y) \rtimes \mathbb{F}_m$.

▲ 注 ▶ ▲ 伊 ▶

The first II_1 factors with unique Cartan subalgebra

From now on : unique Cartan = unique up to unitary conjugacy.

Ozawa-Popa, 2007

If $\mathbb{F}_n \curvearrowright (X, \mu)$ is a profinite free ergodic pmp action, then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \mathbb{F}_n$.

Profinite ergodic action : $\Gamma \curvearrowright \lim_{n \to \infty} \Gamma/\Gamma_n$ where $[\Gamma : \Gamma_n] < \infty$.

First ingredient :

The complete metric approximation property of the free group, and of all its crossed products by profinite actions.

Second ingredient :

Popa's malleable deformation of any crossed product $L^{\infty}(X) \rtimes \mathbb{F}_n$.

We explain both ingredients, and their gradual improvements up to our main result, in the next slides.

Complete metric approximation property (CMAP)

Herz-Schur multipliers and CMAP (Haagerup, 1978)

- ► We call $f : \Gamma \to \mathbb{C}$ a Herz-Schur multiplier if the linear map $L\Gamma \to L\Gamma : u_g \mapsto f(g)u_g$ is completely bounded. We denote by $||f||_{cb}$ the cb-norm of that map.
- ▶ We say that Γ has CMAP if there exists a sequence of finitely supported Herz-Schur multipliers $f_n : \Gamma \to \mathbb{C}$ tending to 1 pointwise and satisfying $\limsup_n \|f_n\|_{cb} = 1$.

Examples :

- ▶ Z has CMAP by Fejér summation of Fourier series.
- Amenable groups have CMAP : the f_n can be taken positive definite.
- ▶ \mathbb{F}_n has CMAP by suitably cutting off the maps $g \mapsto \rho^{|g|}$ where $0 < \rho < 1, \rho \to 1$.
- CMAP is stable under free products, direct products, and subgroups.

The notion of CMAP makes sense for II_1 factors :

- ▶ LΓ has CMAP if and only if Γ has CMAP.
- ▶ If Γ has CMAP and $\Gamma \frown X$ is a **profinite** action, then $L^{\infty}(X) \rtimes \Gamma$ has CMAP.

Ozawa-Popa (2007) : if *M* has CMAP and $A \subset M$ is a Cartan subalgebra, then the inclusion $A \subset M$ is "weakly compact".

- \checkmark This roughly means that $\mathcal{N}_M(A) \cap A$ is almost a profinite action.
- First step to study uniqueness of Cartan subalgebras for profinite actions of CMAP groups.

Consider a crossed product $M = L^{\infty}(X) \rtimes \mathbb{F}_n$.

- ▶ For every $0 < \rho < 1$, we have a unital completely positive map $\psi_{\rho} : M \to M$ given by $\psi_{\rho}(bu_g) = \rho^{|g|} bu_g$ for all $b \in L^{\infty}(X)$, $g \in \mathbb{F}_n$.
- One can dilate the family (ψ_{ρ}) into a **malleable deformation :** we have $M \subset \widetilde{M}$, together with a 1-parameter group of automorphisms $\alpha_t \in \operatorname{Aut}(\widetilde{M})$ such that $\psi_{\rho_t}(x) = E_M(\alpha_t(x))$ for all $x \in M$.

Ozawa-Popa (2007) : if $A \subset M$ is a weakly compact Cartan subalgebra, the malleable deformation can be used to prove that A must be unitarily conjugate with $L^{\infty}(X)$.

Uniqueness of Cartan subalgebras for profinite crossed products $L^{\infty}(X) \rtimes \mathbb{F}_n$ follows.

More groups with deformations

Free group \mathbb{F}_n : the function $g \mapsto |g|$ is conditionally of negative type and proper. $\longrightarrow g \mapsto \rho^{|g|}$ for a fixed $0 < \rho < 1$ is positive definite, and tends to 1 pointwise if $\rho \to 1$.

Most general conditionally negative type function on a countable group Γ : functions of the form $g \mapsto ||c(g)||^2$,

where $c : \Gamma \to H_{\mathbb{R}}$ is a 1-cocycle into the orthogonal representation $\pi : \Gamma \to \mathcal{O}(H_{\mathbb{R}})$, i.e. a map satisfying $c(gh) = c(g) + \pi(g)c(h)$.

Theorem (Ozawa-Popa, 2008)

Assume that Γ is nonamenable, has CMAP and that

- F admits a proper 1-cocycle into an orthogonal representation that is weakly contained in the regular representation,
- $\Gamma \curvearrowright (X, \mu)$ is a profinite action,

then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$.

Definition (Cowling-Haagerup, 1988)

A group Γ is weakly amenable if there exists a sequence of finitely supported Herz-Schur multipliers $f_n \to \mathbb{C}$ tending to 1 pointwise such that $\limsup_n \|f_n\|_{cb} < \infty$.

(The optimal value of this lim sup is the Cowling-Haagerup constant of Γ .)

Ozawa, 2010 : in all the previous results, CMAP may be replaced by weak amenability.

If $\Gamma \curvearrowright X$ is a profinite action and $M = L^{\infty}(X) \rtimes \Gamma$, we still have that any Cartan subalgebra $A \subset M$ is "weakly compact".

Importance of this improvement : all Gromov hyperbolic groups are weakly amenable (Ozawa, 2007).

< ≣ > < @ >

Recall : a 1-cocycle of Γ into an orthogonal representation $\pi : \Gamma \to \mathcal{O}(\mathcal{H}_{\mathbb{R}})$ is a map $c : \Gamma \to \mathcal{H}_{\mathbb{R}}$ satisfying $c(gh) = c(g) + \pi(g)c(h)$ for all $g, h \in \Gamma$.

Coarse 1-cocycles : consider a map $c : \Gamma \to H_{\mathbb{R}}$ that only satisfies $\sup_{k \in \Gamma} \|c(gkh) - \pi(g)c(k)\| < \infty$ for all $g, h \in \Gamma$.

Theorem (Chifan-Sinclair, 2011), applicable to all hyperbolic groups

Assume that Γ is a nonamenable, weakly amenable group and that

- F admits a proper coarse 1-cocycle into an orthogonal representation that is weakly contained in the regular representation,
- $\Gamma \curvearrowright (X, \mu)$ is a profinite action,

then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$.

Coarse 1-cocycles, class \mathcal{S} , hyperbolic groups

Recall : a coarse 1-cocycle of Γ into an orthogonal rep $\pi : \Gamma \to \mathcal{O}(H_{\mathbb{R}})$ is a map $c : \Gamma \to H_{\mathbb{R}}$ s.t. $\sup_{k \in \Gamma} \|c(gkh) - \pi(g)c(k)\| < \infty$ for all $g, h \in \Gamma$.

Ozawa's class S: we say that Γ is in the class S if Γ admits a compactification $\Gamma \subset K$ such that the left-right action $\Gamma \times \Gamma \curvearrowright \Gamma$ extends to an action by homeomorphisms of K with

- the left action $\Gamma \curvearrowright K$ being topologically amenable,
- the right action $\Gamma \curvearrowright K$ being trivial on $K \Gamma$.

Example : hyperbolic groups are in S by taking the Gromov boundary.

Theorem (Ozawa, Chifan-Sinclair, 2011)

 $\Gamma \in S$ if and only if Γ is exact and admits a proper coarse 1-cocycle into a representation that is weakly contained in the regular representation.

< ≧ ▶ < ♂ ▶ 17/21

Unique Cartan for arbitrary actions

Novelty of Popa-V approach : we discovered the correct notion of "weak compactness relative to $L^{\infty}(X)$ " for a Cartan subalgebra $A \subset L^{\infty}(X) \rtimes \Gamma$.

Theorem (Popa-V, 2011-2012)

Let Γ be a nonamenable, weakly amenable group in class S and let $\Gamma \curvearrowright (X, \mu)$ be an arbitrary free ergodic pmp action.

Then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$.

The theorem applies to

- all non-elementary hyperbolic groups,
- ▶ all nonamenable discrete subgroups of a rank one simple Lie group,
- all limit groups in the sense of Sela.

The theorem also holds for direct products of such groups.

The same result holds for **nonsingular actions** $\Gamma \curvearrowright (X, \mu)$.

 \checkmark Crossed product $L^{\infty}(X) \rtimes \Gamma$ can be of any type I, II or III.

Theorem (Houdayer-V, 2012)

Let Γ be a weakly amenable group in class S and let $\Gamma \curvearrowright (X, \mu)$ be an arbitrary free ergodic nonsingular action.

Then either $L^{\infty}(X) \rtimes \Gamma$ is amenable, or $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$.

Note: $L^{\infty}(X) \rtimes \Gamma$ can be amenable without Γ being amenable.

▲ 国 ▶ ▲ 御 ▶

C-rigid groups

C-rigid groups : groups Γ such that all $L^{\infty}(X) \rtimes \Gamma$ have unique Cartan.

Conjecture

If $\beta_n^{(2)}(\Gamma) \neq 0$ for some $n \geq 1$, then Γ is C-rigid.

Supporting evidence :

• (Popa-V, 2011) All weakly amenable Γ with $\beta_1^{(2)}(\Gamma) > 0$ are C-rigid.

 C_{gms} -rigid groups : all $L^{\infty}(X) \rtimes \Gamma$ have a unique group measure space Cartan subalgebra.

- ► (Popa-V, 2009) All $\Gamma_1 * \Gamma_2$ with Γ_1 infinite property (T) are C_{gms} -rigid.
- (Chifan-Peterson, 2010) If β₁⁽²⁾(Γ) > 0 and if Γ has a nonamenable subgroup with the relative property (T), then Γ is C_{gms}-rigid.
- (Ioana, 2011) If β₁⁽²⁾(Γ) > 0 and if Γ → (X, μ) is either rigid or compact, then L[∞](X) × Γ has a unique group measure space Cartan.

Which groups are *C*-rigid ?

✓ A characterization seems even difficult go guess !

- Conjecturally : if $\beta_n^{(2)}(\Gamma) > 0$, then Γ is C-rigid.
- ► (Ozawa-Popa '08, Popa-V '09) If $\Gamma = H \rtimes \Lambda$ with H infinite abelian, then Γ is **not** C-rigid.
- ► **Question :** give an example of a group Γ that has no almost normal infinite amenable subgroup and that is not C-rigid either !

Still hungry ?

- More mathematical details : séminaire Algèbres d'Opérateurs à Paris (Chevaleret), jeudi 29 mars, 14h00.
- Otherwise : have a nice lunch !