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Recall the definition of a multiplier Hopf algebra.

Definition

Suppose that

A is an algebra with a non-degenerate product,

∆ : A → M(A ⊗ A) is a coproduct,

the canonical maps T1 and T2, defined by

T1(a ⊗ b) = ∆(a)(1 ⊗ b) and T2(a ⊗ b) = (a ⊗ 1)∆(b)

are bijective maps from A ⊗ A to A ⊗ A.

Then (A,∆) is a multiplier Hopf algebra.

For a weak multiplier Hopf algebra, the canonical maps are no
longer assumed to be bijective.
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Definition (preliminary)

A pair (A,∆) will be a weak multiplier Hopf algebra if:

A is an idempotent algebra with a non-degenerate product.

∆ : A → M(A ⊗ A) is a full coproduct with a counit.

There is multiplier E ∈ M(A ⊗ A) determining the ranges of
the canonical maps T1 and T2 (playing the role of ∆(1)).

The kernels of the canonical maps are also determined by
E in a specific way.

Theorem

There is a unique antipode S giving ’generalized inverses’ of
the canonical maps. It is a linear map S : A → M(A) and it is
both a anti-algebra and a anti-coalgebra map.
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Proposition

Any finite-dimensional weak Hopf algebra is a regular weak
multiplier Hopf algebra. Conversely, any regular weak multiplier
Hopf algebra with a finite-dimensional underlying algebra is a
weak Hopf algebra. Of course, E = ∆(1) in this case.

Proposition

Let G be a groupoid and let A be the algebra K (G) of complex
functions on G with finite support. For f ∈ K (G), define
∆(f )(p, q) = f (pq) if p, q ∈ G and if pq is defined; otherwise we
set ∆(f )(p, q) = 0. Then (A,∆) is a regular weak multiplier
Hopf algebra. The idempotent E is given by the function that is
1 on pairs (p, q) of elements so that pq is defined and 0 on
other pairs. The antipode is given by S(f )(p) = f (p−1).
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The main definition

Definition

A pair (A,∆) will be a weak multiplier Hopf algebra if:

A is an idempotent algebra with a non-degenerate product.

∆ : A → M(A ⊗ A) is a full coproduct with a counit.

There is an idempotent multiplier E ∈ M(A ⊗ A) so that

∆(A)(1 ⊗ A) = E(A ⊗ A) and (A ⊗ 1)∆(A) = (A ⊗ A)E

and

(ι⊗∆)(E) = (E ⊗ 1)(1 ⊗ E) = (1 ⊗ E)(E ⊗ 1).

The kernels of the canonical maps are given by the ranges
of the idempotents 1− F1 and 1− F2 respectively where F1

and F2 are obtained as follows.
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Proposition

There exists a right multiplier F1 of A ⊗ Aop and a left multiplier
F2 of Aop ⊗ A, uniquely determined by

E13(F1 ⊗ 1) = E13(1 ⊗ E) and (1 ⊗ F2)E13 = (E ⊗ 1)E13.

Remark

These idempotents F1 and F2 define idempotent maps G1

and G2 from A ⊗ A to itself by

G1(a ⊗ b) = (a ⊗ 1)F1(1 ⊗ b)

G2(a ⊗ b) = (a ⊗ 1)F2(1 ⊗ b).

We have T1 ◦ (1 − G1) = 0 and T2 ◦ (1 − G2) = 0.
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Definition

A generalized inverse R1 of T1 is a linear map from A ⊗ A to
itself so that T1R1T1 = T1 and R1T1R1 = R1. Similarly for T2.

These generalized inverses are completely determined by a
choice of projections on the ranges and on the kernels.

Proposition

There exists a unique linear map S from A to M(A), such that
The maps R1 and R2 given by

R1(a ⊗ b) =
∑

(a) a(1) ⊗ S(a(2))b

R2(a ⊗ b) =
∑

(b) aS(b(1))⊗ b(2)

are generalized inverses of the canonical maps T1 and T2.
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Properties of the antipode

Remark

First, we obtain maps S1 and S2 giving R1 and R2

respectively. The fact that S1 and S2 actually coincide is a
consequence of the formulas giving the idempotents F1

and F2 in terms of E. This is a remarkable fact.

We have
∑

(a) a(1)S(a(2))a(3) = a
∑

(a) S(a(1))a(2)S(a(3)) = S(a).

If the map S is bijective from A to itself, we call the weak
multiplier Hopf algebra regular. This happens, as in the
case of Hopf algebras, precisely if flipping the coproduct on
A (or the multiplication in A) still yields a weak multiplier
Hopf algebra.
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The source and target maps

Recall that in a groupoid, the product pq of two elements p, q is
defined if the source s(p) is equal to the target t(p). They are
thought of as elements in G and we have the formulas

s(p) = p−1p and t(p) = pp−1

for all p ∈ G.

Definition

Assume that (A,∆) is a weak multiplier Hopf algebra with
antipode S. The source and target maps εs and εt are defined
as

εt(a) =
∑

a(1)S(a(2)) and εs(a) =
∑

S(a(1))a(2).
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The source and target algebras

The source and target maps, map into the source and target
algebras As and At . They are defined as follows.

Definition

Let E be the canonical idempotent of the weak multiplier Hopf
algebra (A,∆). Then we denote

As = {y ∈ M(A) | ∆(y) = E(1 ⊗ y)}.

At = {x ∈ M(A) | ∆(x) = (x ⊗ 1)E}.

Remark

The spaces εs(A) and εt(A) are subalgebras of As and At

respectively. In fact, we can show that As and At are the
multiplier algebras of εs(A) and εt(A).

The algebras As and At (or rather εs(A) and εt(A)) are the
’left’ and the ’right’ leg of E and E ∈ M(εs(A)⊗ εt(A)).
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If (A,∆) is a multiplier Hopf algebra, the algebras As and
At are scalar multiples of the identity, and we get the usual
definitions.
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Integrals on weak multiplier Hopf algebras

Definition

Let (A,∆) be a (regular) weak multiplier Hopf algebra with
source and target algebras As and At . A non-zero linear
functional ϕ on A is called a left integral if (ι⊗ ϕ)∆(a) ∈ At for
all a ∈ A. Similarly, a non-zero linear functional ψ on A is called
a right integral if (ψ ⊗ ι)∆(a) ∈ As for all a ∈ A.

If (A,∆) is a multiplier Hopf algebra, the algebras As and
At are scalar multiples of the identity, and we get the usual
definitions.

As the antipode S flips the coproduct and maps At to As, it
will map left integrals to right integrals (and vice versa).
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Properties of integrals on WMHA’s

Proposition

Let ϕ be a left integral on A. Then we have, for all a ∈ A

(ι⊗ ϕ)∆(a) =
∑

(a) a(1)S(a(2))ϕ(a(3)) (1)

=
∑

(a) εt(a(1))ϕ(a(2)). (2)

Similarly, when ψ is a right integral, we have for all a ∈ A

(ψ ⊗ ι)∆(a) =
∑

(a) ψ(a(1))S(a(2))a(3) (3)
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Let ϕ be a left integral on A. Then we have, for all a ∈ A

(ι⊗ ϕ)∆(a) =
∑

(a) a(1)S(a(2))ϕ(a(3)) (1)

=
∑

(a) εt(a(1))ϕ(a(2)). (2)

Similarly, when ψ is a right integral, we have for all a ∈ A

(ψ ⊗ ι)∆(a) =
∑

(a) ψ(a(1))S(a(2))a(3) (3)

=
∑

(a) ψ(a(1))εs(a(2)). (4)

These formulas make sense in the multiplier algebra M(A) of A.
The proof is rather tricky.
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algebras (and algebraic quantum hypergroups).
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More properties of integrals

Proposition

Let ϕ be a non-zero linear functional on A. For a, b ∈ A, let

c = (ι⊗ ϕ)(∆(a)(1 ⊗ b)) and d = (ι⊗ ϕ)((1 ⊗ a)∆(b)).

These elements belong to A.Then ϕ is a left integral if and only
if we have d = S(c) for all a and b. There is a similar result for
right integrals.

Remark

This result looks completely the same as for multiplier Hopf
algebras (and algebraic quantum hypergroups).

It is the main reason why many properties for multiplier
Hopf algebras with integrals remain true for weak multiplier
Hopf algebras.
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Faithfulness of integrals

In the case of a multiplier Hopf algebra, integrals are
automatically faithful. This is no longer true for weak multiplier
Hopf algebras.

Example

Take two Hopf algebras (B,∆) and (C,∆). Let A be the direct
sum of the algebras B and C. Define a coproduct ∆ on A by

∆((b, c)) =
∑

(b),(c)

(b(1), c(1))⊗ (b(2), c(2)).

The pair (A,∆) is no longer a Hopf algebra, but a weak Hopf
algebra.

If one of the components has an integral and the other has not,
we get a weak multiplier Hopf algebra with an integral, but not
with a faithful one.
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Definition

Assume that (A,∆) is a regular weak multiplier Hopf algebra
with a faithful set of integrals.
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Introduction Main theory Source and target maps Integrals Duality Conclusions & references

Duality for weak multiplier Hopf algebras with integrals

Definition

Assume that (A,∆) is a regular weak multiplier Hopf algebra
with a faithful set of integrals. Then we define Â as the space of
linear functionals on A spanned by elements of the form ϕ( · a)
where ϕ is a left integral and a ∈ A.

The choice of the representation of the elements in Â is not
important. One can use right integrals and one can put the
elements of A left or right in the two cases.

Theorem

The adjoint of the coproduct ∆ on A makes of Â an idempotent
algebra with a non-degenerate product. The adjoint of the
product defines a coproduct ∆̂ on Â. This new pair (Â, ∆̂) is
again a regular weak multiplier Hopf algebra with a faithful set
of integrals.
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Conclusions and further research

We have a good definition and the basic results.
We also have the right properties of the source and target
algebras As and At , as well as of the source and target
maps

εs(a) =
∑

(a)

S(a(1))a(2) and εt(a) =
∑

(a)

a(1)S(a(2)).

The study of integrals and duality is essentially completed.
We are working on an algebroid approach. This should not
be a problem.
We need to give more and interesting examples and
possible applications.
We need to study the case of a weak multiplier Hopf
∗-algebra with positive integrals and relate this with the
work on measured quantum groupoids.
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