Introduction	Main theory	Source and target maps	Integrals	Duality	Conclusions & references

Weak Multiplier Hopf Algebras.

Integrals and duality.

A. Van Daele

Department of Mathematics University of Leuven

March 2012 / Caen

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	Main theory	Source and target maps	Integrals	Duality	Conclusions & references
Outline					

• Introduction.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- Introduction.
- Weak multiplier Hopf algebras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Introduction.
- Weak multiplier Hopf algebras.
- The source and target algebras.

Introduction	Main theory	Source and target maps	Integrals	Duality	Conclusions & references
Outline					

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Introduction.
- Weak multiplier Hopf algebras.
- The source and target algebras.
- Integrals on weak multiplier Hopf algebras.

Introduction	Main theory	Source and target maps	Integrals	Duality	Conclusions & references
Outline					

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Introduction.
- Weak multiplier Hopf algebras.
- The source and target algebras.
- Integrals on weak multiplier Hopf algebras.
- Duality.

Introduction	Main theory	Source and target maps	Integrals	Duality	Conclusions & references
Outline					

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- Introduction.
- Weak multiplier Hopf algebras.
- The source and target algebras.
- Integrals on weak multiplier Hopf algebras.
- Duality.
- Conclusion and further research.

Introduction	Main theory	Source and target maps	Integrals	Duality	Conclusions & references
Outline					

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- Introduction.
- Weak multiplier Hopf algebras.
- The source and target algebras.
- Integrals on weak multiplier Hopf algebras.
- Duality.
- Conclusion and further research.
- References.

Introduction	Main theory	Source and target maps	Integrals	Duality	Conclusions & references
Outline					

- Introduction.
- Weak multiplier Hopf algebras.
- The source and target algebras.
- Integrals on weak multiplier Hopf algebras.
- Duality.
- Conclusion and further research.
- References.

This is about joint work in progress with Shuanhong Wang from Southeast University Nanjing (China).

Recall the definition of a multiplier Hopf algebra.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

 $T_1(a \otimes b) = \Delta(a)(1 \otimes b)$ and $T_2(a \otimes b) = (a \otimes 1)\Delta(b)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

are bijective maps from $A \otimes A$ to $A \otimes A$.

 $T_1(a \otimes b) = \Delta(a)(1 \otimes b)$ and $T_2(a \otimes b) = (a \otimes 1)\Delta(b)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

are bijective maps from $A \otimes A$ to $A \otimes A$.

Then (A, Δ) is a multiplier Hopf algebra.

 $I_1(a \otimes b) = \Delta(a)(1 \otimes b)$ and $I_2(a \otimes b) = (a \otimes 1)\Delta(a \otimes b)$

are bijective maps from $A \otimes A$ to $A \otimes A$.

Then (A, Δ) is a multiplier Hopf algebra.

For a weak multiplier Hopf algebra, the canonical maps are no longer assumed to be bijective.

(日) (日) (日) (日) (日) (日) (日)

Introduction	Main theory	Source and target maps	Integrals	Duality	Conclusions & references
Introdu	ction				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (preliminary)

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

Introduction	Main theory	Source and target maps	Integrals	Duality	Conclusions & references
Introdu	ction				

Definition (preliminary)

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

• A is an idempotent algebra with a non-degenerate product.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Definition (preliminary)

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

• A is an idempotent algebra with a non-degenerate product.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

• $\Delta : A \to M(A \otimes A)$ is a full coproduct with a counit.

Definition (preliminary)

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

- A is an idempotent algebra with a non-degenerate product.
- $\Delta : A \rightarrow M(A \otimes A)$ is a full coproduct with a counit.
- There is multiplier E ∈ M(A ⊗ A) determining the ranges of the canonical maps T₁ and T₂ (playing the role of Δ(1)).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Definition (preliminary)

- A pair (A, Δ) will be a weak multiplier Hopf algebra if:
 - A is an idempotent algebra with a non-degenerate product.
 - $\Delta : A \rightarrow M(A \otimes A)$ is a full coproduct with a counit.
 - There is multiplier E ∈ M(A ⊗ A) determining the ranges of the canonical maps T₁ and T₂ (playing the role of Δ(1)).
 - The kernels of the canonical maps are also determined by *E* in a specific way.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Definition (preliminary)

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

- A is an idempotent algebra with a non-degenerate product.
- $\Delta : A \to M(A \otimes A)$ is a full coproduct with a counit.
- There is multiplier E ∈ M(A ⊗ A) determining the ranges of the canonical maps T₁ and T₂ (playing the role of Δ(1)).
- The kernels of the canonical maps are also determined by *E* in a specific way.

Theorem

There is a unique antipode S giving 'generalized inverses' of the canonical maps.

Definition (preliminary)

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

- A is an idempotent algebra with a non-degenerate product.
- $\Delta : A \to M(A \otimes A)$ is a full coproduct with a counit.
- There is multiplier E ∈ M(A ⊗ A) determining the ranges of the canonical maps T₁ and T₂ (playing the role of Δ(1)).
- The kernels of the canonical maps are also determined by *E* in a specific way.

Theorem

There is a unique antipode S giving 'generalized inverses' of the canonical maps. It is a linear map $S : A \to M(A)$ and it is both a anti-algebra and a anti-coalgebra map.

Proposition

Any finite-dimensional weak Hopf algebra is a regular weak multiplier Hopf algebra.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

Proposition

Any finite-dimensional weak Hopf algebra is a regular weak multiplier Hopf algebra. Conversely, any regular weak multiplier Hopf algebra with a finite-dimensional underlying algebra is a weak Hopf algebra.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

Proposition

The basic examples

Any finite-dimensional weak Hopf algebra is a regular weak multiplier Hopf algebra. Conversely, any regular weak multiplier Hopf algebra with a finite-dimensional underlying algebra is a weak Hopf algebra. Of course, $E = \Delta(1)$ in this case.

・ コット (雪) ・ (目) ・ (目)

Proposition

Any finite-dimensional weak Hopf algebra is a regular weak multiplier Hopf algebra. Conversely, any regular weak multiplier Hopf algebra with a finite-dimensional underlying algebra is a weak Hopf algebra. Of course, $E = \Delta(1)$ in this case.

Proposition

Let G be a groupoid and let A be the algebra K(G) of complex functions on G with finite support.

Proposition

Any finite-dimensional weak Hopf algebra is a regular weak multiplier Hopf algebra. Conversely, any regular weak multiplier Hopf algebra with a finite-dimensional underlying algebra is a weak Hopf algebra. Of course, $E = \Delta(1)$ in this case.

Proposition

Let G be a groupoid and let A be the algebra K(G) of complex functions on G with finite support. For $f \in K(G)$, define $\Delta(f)(p,q) = f(pq)$ if $p, q \in G$ and if pq is defined; otherwise we set $\Delta(f)(p,q) = 0$.

Proposition

Any finite-dimensional weak Hopf algebra is a regular weak multiplier Hopf algebra. Conversely, any regular weak multiplier Hopf algebra with a finite-dimensional underlying algebra is a weak Hopf algebra. Of course, $E = \Delta(1)$ in this case.

Proposition

Let G be a groupoid and let A be the algebra K(G) of complex functions on G with finite support. For $f \in K(G)$, define $\Delta(f)(p,q) = f(pq)$ if $p, q \in G$ and if pq is defined; otherwise we set $\Delta(f)(p,q) = 0$. Then (A, Δ) is a regular weak multiplier Hopf algebra.

Proposition

Any finite-dimensional weak Hopf algebra is a regular weak multiplier Hopf algebra. Conversely, any regular weak multiplier Hopf algebra with a finite-dimensional underlying algebra is a weak Hopf algebra. Of course, $E = \Delta(1)$ in this case.

Proposition

Let G be a groupoid and let A be the algebra K(G) of complex functions on G with finite support. For $f \in K(G)$, define $\Delta(f)(p,q) = f(pq)$ if $p, q \in G$ and if pq is defined; otherwise we set $\Delta(f)(p,q) = 0$. Then (A, Δ) is a regular weak multiplier Hopf algebra. The idempotent E is given by the function that is 1 on pairs (p,q) of elements so that pq is defined and 0 on other pairs.

Proposition

Any finite-dimensional weak Hopf algebra is a regular weak multiplier Hopf algebra. Conversely, any regular weak multiplier Hopf algebra with a finite-dimensional underlying algebra is a weak Hopf algebra. Of course, $E = \Delta(1)$ in this case.

Proposition

Let G be a groupoid and let A be the algebra K(G) of complex functions on G with finite support. For $f \in K(G)$, define $\Delta(f)(p,q) = f(pq)$ if $p, q \in G$ and if pq is defined; otherwise we set $\Delta(f)(p,q) = 0$. Then (A, Δ) is a regular weak multiplier Hopf algebra. The idempotent E is given by the function that is 1 on pairs (p,q) of elements so that pq is defined and 0 on other pairs. The antipode is given by $S(f)(p) = f(p^{-1})$.

Definition

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

Definition

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

• A is an idempotent algebra with a non-degenerate product.

Definition

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

- A is an idempotent algebra with a non-degenerate product.
- $\Delta : A \to M(A \otimes A)$ is a full coproduct with a counit.

Definition

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

- A is an idempotent algebra with a non-degenerate product.
- $\Delta : A \to M(A \otimes A)$ is a full coproduct with a counit.
- There is an idempotent multiplier $E \in M(A \otimes A)$ so that

 $\Delta(A)(1 \otimes A) = E(A \otimes A)$ and $(A \otimes 1)\Delta(A) = (A \otimes A)E$

Definition

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

- A is an idempotent algebra with a non-degenerate product.
- $\Delta : A \to M(A \otimes A)$ is a full coproduct with a counit.
- There is an idempotent multiplier $E \in M(A \otimes A)$ so that

 $\Delta(A)(1\otimes A) = E(A\otimes A)$ and $(A\otimes 1)\Delta(A) = (A\otimes A)E$

and

 $(\iota \otimes \Delta)(E) = (E \otimes 1)(1 \otimes E) = (1 \otimes E)(E \otimes 1).$

Definition

A pair (A, Δ) will be a weak multiplier Hopf algebra if:

- A is an idempotent algebra with a non-degenerate product.
- $\Delta : A \to M(A \otimes A)$ is a full coproduct with a counit.
- There is an idempotent multiplier $E \in M(A \otimes A)$ so that

 $\Delta(A)(1 \otimes A) = E(A \otimes A)$ and $(A \otimes 1)\Delta(A) = (A \otimes A)E$

and

 $(\iota \otimes \Delta)(E) = (E \otimes 1)(1 \otimes E) = (1 \otimes E)(E \otimes 1).$

 The kernels of the canonical maps are given by the ranges of the idempotents 1 – F₁ and 1 – F₂ respectively where F₁ and F₂ are obtained as follows.
Let (A, Δ) and *E* in $M(A \otimes A)$ be as before.

Let (A, Δ) and *E* in $M(A \otimes A)$ be as before.

Proposition

There exists a right multiplier F_1 of $A \otimes A^{op}$ and a left multiplier F_2 of $A^{op} \otimes A$, uniquely determined by

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

 $E_{13}(F_1 \otimes 1) = E_{13}(1 \otimes E)$ and $(1 \otimes F_2)E_{13} = (E \otimes 1)E_{13}$.

Let (A, Δ) and *E* in $M(A \otimes A)$ be as before.

Proposition

There exists a right multiplier F_1 of $A \otimes A^{op}$ and a left multiplier F_2 of $A^{op} \otimes A$, uniquely determined by

 $E_{13}(F_1 \otimes 1) = E_{13}(1 \otimes E)$ and $(1 \otimes F_2)E_{13} = (E \otimes 1)E_{13}$.

Remark

 These idempotents F₁ and F₂ define idempotent maps G₁ and G₂ from A ⊗ A to itself by

 $\begin{aligned} G_1(a\otimes b) &= (a\otimes 1)F_1(1\otimes b)\\ G_2(a\otimes b) &= (a\otimes 1)F_2(1\otimes b). \end{aligned}$

Let (A, Δ) and *E* in $M(A \otimes A)$ be as before.

Proposition

There exists a right multiplier F_1 of $A \otimes A^{op}$ and a left multiplier F_2 of $A^{op} \otimes A$, uniquely determined by

 $E_{13}(F_1 \otimes 1) = E_{13}(1 \otimes E)$ and $(1 \otimes F_2)E_{13} = (E \otimes 1)E_{13}$.

Remark

 These idempotents F₁ and F₂ define idempotent maps G₁ and G₂ from A
A to itself by

> $G_1(a \otimes b) = (a \otimes 1)F_1(1 \otimes b)$ $G_2(a \otimes b) = (a \otimes 1)F_2(1 \otimes b).$

• We have $T_1 \circ (1 - G_1) = 0$ and $T_2 \circ (1 - G_2) = 0$.

Existence of the antipode

Definition

A generalized inverse R_1 of T_1 is a linear map from $A \otimes A$ to itself so that $T_1R_1T_1 = T_1$ and $R_1T_1R_1 = R_1$. Similarly for T_2 .

Existence of the antipode

Definition

A generalized inverse R_1 of T_1 is a linear map from $A \otimes A$ to itself so that $T_1R_1T_1 = T_1$ and $R_1T_1R_1 = R_1$. Similarly for T_2 .

These generalized inverses are completely determined by a choice of projections on the ranges and on the kernels.

・ コット (雪) ・ (目) ・ (目)

Existence of the antipode

Definition

A generalized inverse R_1 of T_1 is a linear map from $A \otimes A$ to itself so that $T_1R_1T_1 = T_1$ and $R_1T_1R_1 = R_1$. Similarly for T_2 .

These generalized inverses are completely determined by a choice of projections on the ranges and on the kernels.

Proposition

There exists a unique linear map S from A to M(A), such that The maps R_1 and R_2 given by

 $R_1(a \otimes b) = \sum_{(a)} a_{(1)} \otimes S(a_{(2)})b$

 $R_2(a \otimes b) = \sum_{(b)} aS(b_{(1)}) \otimes b_{(2)}$

are generalized inverses of the canonical maps T_1 and T_2 .

Remark

First, we obtain maps S₁ and S₂ giving R₁ and R₂ respectively.

Remark

 First, we obtain maps S₁ and S₂ giving R₁ and R₂ respectively. The fact that S₁ and S₂ actually coincide is a consequence of the formulas giving the idempotents F₁ and F₂ in terms of E.

Remark

 First, we obtain maps S₁ and S₂ giving R₁ and R₂ respectively. The fact that S₁ and S₂ actually coincide is a consequence of the formulas giving the idempotents F₁ and F₂ in terms of E. This is a remarkable fact.

Remark

 First, we obtain maps S₁ and S₂ giving R₁ and R₂ respectively. The fact that S₁ and S₂ actually coincide is a consequence of the formulas giving the idempotents F₁ and F₂ in terms of E. This is a remarkable fact.

We have

 $\sum_{(a)} a_{(1)} S(a_{(2)}) a_{(3)} = a$ $\sum_{(a)} S(a_{(1)}) a_{(2)} S(a_{(3)}) = S(a).$

Remark

 First, we obtain maps S₁ and S₂ giving R₁ and R₂ respectively. The fact that S₁ and S₂ actually coincide is a consequence of the formulas giving the idempotents F₁ and F₂ in terms of E. This is a remarkable fact.

• We have

 $\sum_{(a)} a_{(1)} S(a_{(2)}) a_{(3)} = a$ $\sum_{(a)} S(a_{(1)}) a_{(2)} S(a_{(3)}) = S(a).$

 If the map S is bijective from A to itself, we call the weak multiplier Hopf algebra regular.

Remark

 First, we obtain maps S₁ and S₂ giving R₁ and R₂ respectively. The fact that S₁ and S₂ actually coincide is a consequence of the formulas giving the idempotents F₁ and F₂ in terms of E. This is a remarkable fact.

• We have

 $\sum_{(a)} a_{(1)} S(a_{(2)}) a_{(3)} = a$ $\sum_{(a)} S(a_{(1)}) a_{(2)} S(a_{(3)}) = S(a).$

 If the map S is bijective from A to itself, we call the weak multiplier Hopf algebra regular. This happens, as in the case of Hopf algebras, precisely if flipping the coproduct on A (or the multiplication in A) still yields a weak multiplier Hopf algebra.

The source and target maps

Recall that in a groupoid, the product pq of two elements p, q is defined if the source s(p) is equal to the target t(p).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

The source and target maps

Recall that in a groupoid, the product pq of two elements p, q is defined if the source s(p) is equal to the target t(p). They are thought of as elements in *G* and we have the formulas

$$s(p) = p^{-1}p$$
 and $t(p) = pp^{-1}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

for all $p \in G$.

The source and target maps

Recall that in a groupoid, the product pq of two elements p, q is defined if the source s(p) is equal to the target t(p). They are thought of as elements in *G* and we have the formulas

$$s(p) = p^{-1}p$$
 and $t(p) = pp^{-1}$

for all $p \in G$.

Definition

Assume that (A, Δ) is a weak multiplier Hopf algebra with antipode S. The source and target maps ε_s and ε_t are defined as

$$arepsilon_t(a) = \sum a_{(1)} S(a_{(2)})$$
 and $arepsilon_s(a) = \sum S(a_{(1)}) a_{(2)}$

The source and target maps, map into the source and target algebras A_s and A_t .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The source and target maps, map into the source and target algebras A_s and A_t . They are defined as follows.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

・ コット (雪) ・ (目) ・ (目)

The source and target algebras

The source and target maps, map into the source and target algebras A_s and A_t . They are defined as follows.

Definition

Let *E* be the canonical idempotent of the weak multiplier Hopf algebra (A, Δ) .

The source and target maps, map into the source and target algebras A_s and A_t . They are defined as follows.

Definition

Let *E* be the canonical idempotent of the weak multiplier Hopf algebra (A, Δ) . Then we denote

 $A_{s} = \{y \in M(A) \mid \Delta(y) = E(1 \otimes y)\}.$

 $A_t = \{ x \in M(A) \mid \Delta(x) = (x \otimes 1)E \}.$

The source and target maps, map into the source and target algebras A_s and A_t . They are defined as follows.

Definition

Let *E* be the canonical idempotent of the weak multiplier Hopf algebra (A, Δ) . Then we denote

$$A_s = \{y \in M(A) \mid \Delta(y) = E(1 \otimes y)\}.$$

 $A_t = \{x \in M(A) \mid \Delta(x) = (x \otimes 1)E\}.$

Remark

The spaces ε_s(A) and ε_t(A) are subalgebras of A_s and A_t respectively.

The source and target maps, map into the source and target algebras A_s and A_t . They are defined as follows.

Definition

Let *E* be the canonical idempotent of the weak multiplier Hopf algebra (A, Δ) . Then we denote

 $A_{s} = \{y \in M(A) \mid \Delta(y) = E(1 \otimes y)\}.$

 $A_t = \{x \in M(A) \mid \Delta(x) = (x \otimes 1)E\}.$

Remark

The spaces ε_s(A) and ε_t(A) are subalgebras of A_s and A_t respectively. In fact, we can show that A_s and A_t are the multiplier algebras of ε_s(A) and ε_t(A).

The source and target maps, map into the source and target algebras A_s and A_t . They are defined as follows.

Definition

Let *E* be the canonical idempotent of the weak multiplier Hopf algebra (A, Δ) . Then we denote

 $A_{s} = \{y \in M(A) \mid \Delta(y) = E(1 \otimes y)\}.$

 $A_t = \{x \in M(A) \mid \Delta(x) = (x \otimes 1)E\}.$

Remark

- The spaces ε_s(A) and ε_t(A) are subalgebras of A_s and A_t respectively. In fact, we can show that A_s and A_t are the multiplier algebras of ε_s(A) and ε_t(A).
- The algebras A_s and A_t (or rather $\varepsilon_s(A)$ and $\varepsilon_t(A)$) are the 'left' and the 'right' leg of E and $E \in M(\varepsilon_s(A) \otimes \varepsilon_t(A))$.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Integrals on weak multiplier Hopf algebras

Definition

Let (A, Δ) be a (regular) weak multiplier Hopf algebra with source and target algebras A_s and A_t .

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Integrals on weak multiplier Hopf algebras

Definition

Let (A, Δ) be a (regular) weak multiplier Hopf algebra with source and target algebras A_s and A_t . A non-zero linear functional φ on A is called a left integral if $(\iota \otimes \varphi)\Delta(a) \in A_t$ for all $a \in A$.

Integrals on weak multiplier Hopf algebras

Definition

Let (A, Δ) be a (regular) weak multiplier Hopf algebra with source and target algebras A_s and A_t . A non-zero linear functional φ on A is called a left integral if $(\iota \otimes \varphi)\Delta(a) \in A_t$ for all $a \in A$. Similarly, a non-zero linear functional ψ on A is called a right integral if $(\psi \otimes \iota)\Delta(a) \in A_s$ for all $a \in A$.

(日) (日) (日) (日) (日) (日) (日)

Integrals on weak multiplier Hopf algebras

Definition

Let (A, Δ) be a (regular) weak multiplier Hopf algebra with source and target algebras A_s and A_t . A non-zero linear functional φ on A is called a left integral if $(\iota \otimes \varphi)\Delta(a) \in A_t$ for all $a \in A$. Similarly, a non-zero linear functional ψ on A is called a right integral if $(\psi \otimes \iota)\Delta(a) \in A_s$ for all $a \in A$.

 If (A, Δ) is a multiplier Hopf algebra, the algebras A_s and A_t are scalar multiples of the identity, and we get the usual definitions.

Integrals on weak multiplier Hopf algebras

Definition

Let (A, Δ) be a (regular) weak multiplier Hopf algebra with source and target algebras A_s and A_t . A non-zero linear functional φ on A is called a left integral if $(\iota \otimes \varphi)\Delta(a) \in A_t$ for all $a \in A$. Similarly, a non-zero linear functional ψ on A is called a right integral if $(\psi \otimes \iota)\Delta(a) \in A_s$ for all $a \in A$.

- If (A, Δ) is a multiplier Hopf algebra, the algebras A_s and A_t are scalar multiples of the identity, and we get the usual definitions.
- As the antipode S flips the coproduct and maps A_t to A_s, it will map left integrals to right integrals (and vice versa).

Duality

Conclusions & references

Properties of integrals on WMHA's

Proposition

Let φ be a left integral on A.

◆ロト ◆母 ト ◆臣 ト ◆臣 - のへの

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

Properties of integrals on WMHA's

Proposition

Let φ be a left integral on A. Then we have, for all $a \in A$

$$(\iota \otimes \varphi) \Delta(a) = \sum_{(a)} a_{(1)} S(a_{(2)}) \varphi(a_{(3)})$$
(1)

Duality

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

Conclusions & references

Properties of integrals on WMHA's

Proposition

Let φ be a left integral on A. Then we have, for all $a \in A$

$$(\iota \otimes \varphi) \Delta(\mathbf{a}) = \sum_{(\mathbf{a})} \mathbf{a}_{(1)} S(\mathbf{a}_{(2)}) \varphi(\mathbf{a}_{(3)})$$
(1)
= $\sum_{(\mathbf{a})} \varepsilon_t(\mathbf{a}_{(1)}) \varphi(\mathbf{a}_{(2)}).$ (2)

Duality

Conclusions & references

Properties of integrals on WMHA's

Proposition

Let φ be a left integral on A. Then we have, for all $a \in A$

$$(\iota \otimes \varphi) \Delta(\boldsymbol{a}) = \sum_{(\boldsymbol{a})} \boldsymbol{a}_{(1)} S(\boldsymbol{a}_{(2)}) \varphi(\boldsymbol{a}_{(3)})$$
(1)
= $\sum_{(\boldsymbol{a})} \varepsilon_t(\boldsymbol{a}_{(1)}) \varphi(\boldsymbol{a}_{(2)}).$ (2)

Similarly, when ψ is a right integral, we have for all $a \in A$

$$(\psi \otimes \iota) \Delta(a) = \sum_{(a)} \psi(a_{(1)}) S(a_{(2)}) a_{(3)}$$
 (3)

・ロト・西ト・田・・田・ シック

Duality

Properties of integrals on WMHA's

Proposition

Let φ be a left integral on A. Then we have, for all $a \in A$

$$(\iota \otimes \varphi) \Delta(\boldsymbol{a}) = \sum_{(\boldsymbol{a})} \boldsymbol{a}_{(1)} S(\boldsymbol{a}_{(2)}) \varphi(\boldsymbol{a}_{(3)})$$
(1)
= $\sum_{(\boldsymbol{a})} \varepsilon_t(\boldsymbol{a}_{(1)}) \varphi(\boldsymbol{a}_{(2)}).$ (2)

Similarly, when ψ is a right integral, we have for all $a \in A$

$$(\psi \otimes \iota) \Delta(a) = \sum_{(a)} \psi(a_{(1)}) S(a_{(2)}) a_{(3)}$$
(3)

$$= \sum_{(a)} \psi(a_{(1)}) \varepsilon_s(a_{(2)}). \tag{4}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Properties of integrals on WMHA's

Proposition

Let φ be a left integral on A. Then we have, for all $a \in A$

$$(\iota \otimes \varphi) \Delta(\boldsymbol{a}) = \sum_{(\boldsymbol{a})} \boldsymbol{a}_{(1)} S(\boldsymbol{a}_{(2)}) \varphi(\boldsymbol{a}_{(3)})$$
(1)
= $\sum_{(\boldsymbol{a})} \varepsilon_t(\boldsymbol{a}_{(1)}) \varphi(\boldsymbol{a}_{(2)}).$ (2)

Similarly, when ψ is a right integral, we have for all $a \in A$

$$\begin{aligned} (\psi \otimes \iota) \Delta(a) &= \sum_{(a)} \psi(a_{(1)}) S(a_{(2)}) a_{(3)} \\ &= \sum_{(a)} \psi(a_{(1)}) \varepsilon_s(a_{(2)}). \end{aligned}$$
 (3)

These formulas make sense in the multiplier algebra M(A) of A.

Duality

Conclusions & references

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Properties of integrals on WMHA's

Proposition

Let φ be a left integral on A. Then we have, for all $a \in A$

$$(\iota \otimes \varphi) \Delta(\boldsymbol{a}) = \sum_{(\boldsymbol{a})} \boldsymbol{a}_{(1)} S(\boldsymbol{a}_{(2)}) \varphi(\boldsymbol{a}_{(3)})$$
(1)
= $\sum_{(\boldsymbol{a})} \varepsilon_t(\boldsymbol{a}_{(1)}) \varphi(\boldsymbol{a}_{(2)}).$ (2)

Similarly, when ψ is a right integral, we have for all $a \in A$

$$\begin{aligned} (\psi \otimes \iota) \Delta(a) &= \sum_{(a)} \psi(a_{(1)}) S(a_{(2)}) a_{(3)} \\ &= \sum_{(a)} \psi(a_{(1)}) \varepsilon_s(a_{(2)}). \end{aligned}$$
 (3)

These formulas make sense in the multiplier algebra M(A) of A. The proof is rather tricky.

Duality

Conclusions & references

・ロン ・聞 と ・ ヨ と ・ ヨ と

3

More properties of integrals

Proposition

Let φ be a non-zero linear functional on A.
Integrals

Duality

Conclusions & references

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

More properties of integrals

Proposition

Let φ be a non-zero linear functional on A. For $a, b \in A$, let

 $c = (\iota \otimes \varphi)(\Delta(a)(1 \otimes b))$ and $d = (\iota \otimes \varphi)((1 \otimes a)\Delta(b)).$

Duality

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

More properties of integrals

Proposition

Let φ be a non-zero linear functional on A. For $a, b \in A$, let

 $c = (\iota \otimes \varphi)(\Delta(a)(1 \otimes b))$ and $d = (\iota \otimes \varphi)((1 \otimes a)\Delta(b)).$

These elements belong to A.

Integrals

Duality

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

More properties of integrals

Proposition

Let φ be a non-zero linear functional on A. For $a, b \in A$, let

 $c = (\iota \otimes \varphi)(\Delta(a)(1 \otimes b))$ and $d = (\iota \otimes \varphi)((1 \otimes a)\Delta(b)).$

These elements belong to A. Then φ is a left integral if and only if we have d = S(c) for all a and b.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

More properties of integrals

Proposition

Let φ be a non-zero linear functional on A. For $a, b \in A$, let

 $c = (\iota \otimes \varphi)(\Delta(a)(1 \otimes b))$ and $d = (\iota \otimes \varphi)((1 \otimes a)\Delta(b)).$

These elements belong to A. Then φ is a left integral if and only if we have d = S(c) for all a and b. There is a similar result for right integrals.

More properties of integrals

Proposition

Let φ be a non-zero linear functional on A. For $a, b \in A$, let

 $c = (\iota \otimes \varphi)(\Delta(a)(1 \otimes b))$ and $d = (\iota \otimes \varphi)((1 \otimes a)\Delta(b)).$

These elements belong to A. Then φ is a left integral if and only if we have d = S(c) for all a and b. There is a similar result for right integrals.

Remark

 This result looks completely the same as for multiplier Hopf algebras (and algebraic quantum hypergroups).

More properties of integrals

Proposition

Let φ be a non-zero linear functional on A. For $a, b \in A$, let

 $c = (\iota \otimes \varphi)(\Delta(a)(1 \otimes b))$ and $d = (\iota \otimes \varphi)((1 \otimes a)\Delta(b)).$

These elements belong to A. Then φ is a left integral if and only if we have d = S(c) for all a and b. There is a similar result for right integrals.

Remark

- This result looks completely the same as for multiplier Hopf algebras (and algebraic quantum hypergroups).
- It is the main reason why many properties for multiplier Hopf algebras with integrals remain true for weak multiplier Hopf algebras.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Faithfulness of integrals

In the case of a multiplier Hopf algebra, integrals are automatically faithful.

In the case of a multiplier Hopf algebra, integrals are automatically faithful. This is no longer true for weak multiplier Hopf algebras.

In the case of a multiplier Hopf algebra, integrals are automatically faithful. This is no longer true for weak multiplier Hopf algebras.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Example

Take two Hopf algebras (B, Δ) and (C, Δ) .

In the case of a multiplier Hopf algebra, integrals are automatically faithful. This is no longer true for weak multiplier Hopf algebras.

Example

Take two Hopf algebras (B, Δ) and (C, Δ) . Let A be the direct sum of the algebras B and C.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In the case of a multiplier Hopf algebra, integrals are automatically faithful. This is no longer true for weak multiplier Hopf algebras.

Example

Take two Hopf algebras (B, Δ) and (C, Δ) . Let A be the direct sum of the algebras B and C. Define a coproduct Δ on A by

$$\Delta((b,c)) = \sum_{(b),(c)} (b_{(1)}, c_{(1)}) \otimes (b_{(2)}, c_{(2)}).$$

・ コット (雪) ・ (目) ・ (目)

In the case of a multiplier Hopf algebra, integrals are automatically faithful. This is no longer true for weak multiplier Hopf algebras.

Example

Take two Hopf algebras (B, Δ) and (C, Δ) . Let A be the direct sum of the algebras B and C. Define a coproduct Δ on A by

$$\Delta((b,c)) = \sum_{(b),(c)} (b_{(1)}, c_{(1)}) \otimes (b_{(2)}, c_{(2)}).$$

The pair (A, Δ) is no longer a Hopf algebra, but a weak Hopf algebra.

In the case of a multiplier Hopf algebra, integrals are automatically faithful. This is no longer true for weak multiplier Hopf algebras.

Example

Take two Hopf algebras (B, Δ) and (C, Δ) . Let A be the direct sum of the algebras B and C. Define a coproduct Δ on A by

$$\Delta((b,c)) = \sum_{(b),(c)} (b_{(1)}, c_{(1)}) \otimes (b_{(2)}, c_{(2)}).$$

The pair (A, Δ) is no longer a Hopf algebra, but a weak Hopf algebra.

If one of the components has an integral and the other has not, we get a weak multiplier Hopf algebra with an integral, but not with a faithful one.

・ロン ・四 と ・ ヨ と ・ ヨ と

Duality for weak multiplier Hopf algebras with integrals

Definition

Assume that (A, Δ) is a regular weak multiplier Hopf algebra with a faithful set of integrals.

・ロト ・四ト ・回ト ・日下

Duality for weak multiplier Hopf algebras with integrals

Definition

Assume that (A, Δ) is a regular weak multiplier Hopf algebra with a faithful set of integrals. Then we define \widehat{A} as the space of linear functionals on A spanned by elements of the form $\varphi(\cdot a)$ where φ is a left integral and $a \in A$.

・ロト ・四ト ・回ト ・日下

Duality for weak multiplier Hopf algebras with integrals

Definition

Assume that (A, Δ) is a regular weak multiplier Hopf algebra with a faithful set of integrals. Then we define \widehat{A} as the space of linear functionals on A spanned by elements of the form $\varphi(\cdot a)$ where φ is a left integral and $a \in A$.

The choice of the representation of the elements in \widehat{A} is not important.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Duality for weak multiplier Hopf algebras with integrals

Definition

Assume that (A, Δ) is a regular weak multiplier Hopf algebra with a faithful set of integrals. Then we define \widehat{A} as the space of linear functionals on A spanned by elements of the form $\varphi(\cdot a)$ where φ is a left integral and $a \in A$.

The choice of the representation of the elements in \widehat{A} is not important. One can use right integrals and one can put the elements of A left or right in the two cases.

Duality for weak multiplier Hopf algebras with integrals

Definition

Assume that (A, Δ) is a regular weak multiplier Hopf algebra with a faithful set of integrals. Then we define \widehat{A} as the space of linear functionals on A spanned by elements of the form $\varphi(\cdot a)$ where φ is a left integral and $a \in A$.

The choice of the representation of the elements in \hat{A} is not important. One can use right integrals and one can put the elements of *A* left or right in the two cases.

Theorem

The adjoint of the coproduct \triangle on A makes of \widehat{A} an idempotent algebra with a non-degenerate product.

Duality for weak multiplier Hopf algebras with integrals

Definition

Assume that (A, Δ) is a regular weak multiplier Hopf algebra with a faithful set of integrals. Then we define \widehat{A} as the space of linear functionals on A spanned by elements of the form $\varphi(\cdot a)$ where φ is a left integral and $a \in A$.

The choice of the representation of the elements in \hat{A} is not important. One can use right integrals and one can put the elements of *A* left or right in the two cases.

Theorem

The adjoint of the coproduct Δ on A makes of \widehat{A} an idempotent algebra with a non-degenerate product. The adjoint of the product defines a coproduct $\widehat{\Delta}$ on \widehat{A} .

Duality for weak multiplier Hopf algebras with integrals

Definition

Assume that (A, Δ) is a regular weak multiplier Hopf algebra with a faithful set of integrals. Then we define \widehat{A} as the space of linear functionals on A spanned by elements of the form $\varphi(\cdot a)$ where φ is a left integral and $a \in A$.

The choice of the representation of the elements in \widehat{A} is not important. One can use right integrals and one can put the elements of *A* left or right in the two cases.

Theorem

The adjoint of the coproduct Δ on A makes of \widehat{A} an idempotent algebra with a non-degenerate product. The adjoint of the product defines a coproduct $\widehat{\Delta}$ on \widehat{A} . This new pair $(\widehat{A}, \widehat{\Delta})$ is again a regular weak multiplier Hopf algebra with a faithful set of integrals.

Conclusions and further research

• We have a good definition and the basic results.

Conclusions and further research

- We have a good definition and the basic results.
- We also have the right properties of the source and target algebras A_s and A_t, as well as of the source and target maps

$$\varepsilon_{s}(a) = \sum_{(a)} S(a_{(1)})a_{(2)}$$
 and $\varepsilon_{t}(a) = \sum_{(a)} a_{(1)}S(a_{(2)}).$

Conclusions and further research

- We have a good definition and the basic results.
- We also have the right properties of the source and target algebras A_s and A_t, as well as of the source and target maps

$$\varepsilon_{s}(a) = \sum_{(a)} S(a_{(1)})a_{(2)}$$
 and $\varepsilon_{t}(a) = \sum_{(a)} a_{(1)}S(a_{(2)}).$

• The study of integrals and duality is essentially completed.

Conclusions and further research

- We have a good definition and the basic results.
- We also have the right properties of the source and target algebras A_s and A_t, as well as of the source and target maps

$$\varepsilon_s(a) = \sum_{(a)} S(a_{(1)})a_{(2)}$$
 and $\varepsilon_t(a) = \sum_{(a)} a_{(1)}S(a_{(2)}).$

- The study of integrals and duality is essentially completed.
- We are working on an algebroid approach. This should not be a problem.

Conclusions and further research

- We have a good definition and the basic results.
- We also have the right properties of the source and target algebras A_s and A_t, as well as of the source and target maps

$$\varepsilon_s(a) = \sum_{(a)} S(a_{(1)})a_{(2)}$$
 and $\varepsilon_t(a) = \sum_{(a)} a_{(1)}S(a_{(2)}).$

- The study of integrals and duality is essentially completed.
- We are working on an algebroid approach. This should not be a problem.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

• We need to give more and interesting examples and possible applications.

Conclusions and further research

- We have a good definition and the basic results.
- We also have the right properties of the source and target algebras A_s and A_t, as well as of the source and target maps

$$\varepsilon_{s}(a) = \sum_{(a)} S(a_{(1)})a_{(2)}$$
 and $\varepsilon_{t}(a) = \sum_{(a)} a_{(1)}S(a_{(2)}).$

- The study of integrals and duality is essentially completed.
- We are working on an algebroid approach. This should not be a problem.
- We need to give more and interesting examples and possible applications.
- We need to study the case of a weak multiplier Hopf
 *-algebra with positive integrals and relate this with the work on measured quantum groupoids.

I. Integral theory and C*-structure. J. Algebra 221 (1999).

[B-N-S] G. Böhm, F. Nill & K. Szlachányi: Weak Hopf algebras *I. Integral theory and C*-structure*. J. Algebra 221 (1999).
[N-V] D. Nikshych & L. Vainerman: *Finite quantum groupiods and their applications*. In *New Directions in Hopf algebras*. MSRI Publications, Vol. 43 (2002).

[B-N-S] G. Böhm, F. Nill & K. Szlachányi: Weak Hopf algebras *I. Integral theory and C*-structure*. J. Algebra 221 (1999).
[N-V] D. Nikshych & L. Vainerman: *Finite quantum groupiods and their applications*. In *New Directions in Hopf algebras*. MSRI Publications, Vol. 43 (2002).
[VD] A. Van Daele: *Multiplier Hopf algebras*. Trans. Am. Math. Soc. 342(2) (1994).

[B-N-S] G. Böhm, F. Nill & K. Szlachányi: Weak Hopf algebras I. Integral theory and C*-structure. J. Algebra 221 (1999).
[N-V] D. Nikshych & L. Vainerman: Finite quantum groupiods and their applications. In New Directions in Hopf algebras.
MSRI Publications, Vol. 43 (2002).
[VD] A. Van Daele: Multiplier Hopf algebras. Trans. Am. Math. Soc. 342(2) (1994).
[VD-W1] A. Van Daele & S. Wang: Weak multiplier Hopf algebras. Preliminaries, motivation and basic examples.

[B-N-S] G. Böhm, F. Nill & K. Szlachányi: Weak Hopf algebras I. Integral theory and C*-structure. J. Algebra 221 (1999). [N-V] D. Nikshych & L. Vainerman: *Finite quantum groupiods* and their applications. In New Directions in Hopf algebras. MSRI Publications, Vol. 43 (2002). [VD] A. Van Daele: *Multiplier Hopf algebras*. Trans. Am. Math. Soc. 342(2) (1994). [VD-W1] A. Van Daele & S. Wang: Weak multiplier Hopf algebras. Preliminaries, motivation and basic examples. [VD-W2] A. Van Daele & S. Wang: Weak multiplier Hopf algebras I. The main theory.

 Introduction
 Main theory
 Source and target maps
 Integrals
 Duality
 Conclusions & references

 References

 [B-N-S] G. Böhm, F. Nill & K. Szlachányi:
 Weak Hopf algebras

 I. Integral theory and C*-structure, J. Algebra 221 (1999).

I. Integral theory and C*-structure. J. Algebra 221 (1999). [N-V] D. Nikshych & L. Vainerman: *Finite quantum groupiods* and their applications. In New Directions in Hopf algebras. MSRI Publications, Vol. 43 (2002). [VD] A. Van Daele: *Multiplier Hopf algebras*. Trans. Am. Math. Soc. 342(2) (1994). [VD-W1] A. Van Daele & S. Wang: Weak multiplier Hopf algebras. Preliminaries, motivation and basic examples. [VD-W2] A. Van Daele & S. Wang: Weak multiplier Hopf algebras I. The main theory. [VD-W3] A. Van Daele & S. Wang: Weak multiplier Hopf

algebras II. The source and target algebras.

Introduction Main theory Source and target maps Duality Conclusions & references References [B-N-S] G. Böhm, F. Nill & K. Szlachányi: Weak Hopf algebras I. Integral theory and C*-structure. J. Algebra 221 (1999). [N-V] D. Nikshych & L. Vainerman: *Finite quantum groupiods* and their applications. In New Directions in Hopf algebras. MSRI Publications, Vol. 43 (2002). [VD] A. Van Daele: *Multiplier Hopf algebras*. Trans. Am. Math. Soc. 342(2) (1994). [VD-W1] A. Van Daele & S. Wang: Weak multiplier Hopf algebras. Preliminaries, motivation and basic examples. [VD-W2] A. Van Daele & S. Wang: Weak multiplier Hopf algebras I. The main theory. [VD-W3] A. Van Daele & S. Wang: Weak multiplier Hopf algebras II. The source and target algebras. [VD-W4] A. Van Daele & S. Wang: Weak multiplier Hopf algebras III. Integrals and duality.

Introduction Main theory Source and target maps Duality Conclusions & references References [B-N-S] G. Böhm, F. Nill & K. Szlachányi: Weak Hopf algebras I. Integral theory and C*-structure. J. Algebra 221 (1999). [N-V] D. Nikshych & L. Vainerman: *Finite quantum groupiods* and their applications. In New Directions in Hopf algebras. MSRI Publications, Vol. 43 (2002). [VD] A. Van Daele: *Multiplier Hopf algebras*. Trans. Am. Math. Soc. 342(2) (1994). [VD-W1] A. Van Daele & S. Wang: Weak multiplier Hopf algebras. Preliminaries, motivation and basic examples. [VD-W2] A. Van Daele & S. Wang: Weak multiplier Hopf algebras I. The main theory. [VD-W3] A. Van Daele & S. Wang: Weak multiplier Hopf algebras II. The source and target algebras. [VD-W4] A. Van Daele & S. Wang: Weak multiplier Hopf algebras III. Integrals and duality. (Preprints K.U. Leuven and Southeast University of Nanjing).