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Leg numbering notation

(a ⊗ b)12 = a ⊗ b ⊗ I ,
(a ⊗ b)23 = I ⊗ a ⊗ b,
(a ⊗ b)13 = a ⊗ I ⊗ b.

This notation extends (by linearity and strong continuity) to
all operators acting on H⊗H

Definition

Let W be a unitary operator acting on H⊗H. We say that W
is a multiplicative unitary if the following pentagon equation

W23W12 = W12W13W23

holds.
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Example

G - a locally compact topological group,
H - a space of functions on G ,
H⊗H - a space of functions on G × G ,

(Wx)(g , h) = x(gh, h).

Then

(W23W12x) (g , h, k) = x(g(hk), hk , k)
(W12W13W23x) (g , h, k) = x((gh)k , hk , k)(
PENTAGON
EQUATION

)
⇐⇒

(
g(hk) = (gh)k

for all g , h, k ∈ G

)
.

W is unitary iff H is the space of square integrable functions
with respect to the right Haar measure.
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Quantum groups and multiplicative unitaries

G = (A,∆)

A is a non-degenerate subalgebra of B(H),
∆ ∈ Mor(A,A⊗ A), ∆ - coassociative.
W is a unitary operator acting on H⊗H.

W is a multiplicative unitary for G if
A = {(ω ⊗ id)W : ω ∈ B(H)∗}CLS

∆(a) = W (a ⊗ I )W ∗ for any a ∈ A

(id⊗∆)W = W12W13

Then
W23W12 = W12W13W23
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Transposition of operators

Let H be the Hilbert space complex-congugate to H. Then we
have an antilinear isometric bijection

H 3 x ←→ x ∈ H

and linear antimultiplicative preserving hermitian conjugation
bijection (called transposition)

B(H) 3 a←→ a> ∈ B(H)

such that a>x = a∗x and
(
x a> y

)
= (y a x) for all x , y ∈ H

and a ∈ B(H). Transposition is also defined for closed
(densely defined) operators. In particular D(a>) = D(a∗).
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Manageability

Definition
Multiplicative unitary W ∈ B(H⊗H) is called manageable if
there exist unitary W̃ ∈ B(H⊗H) and strictly positive
selfadjoint Q acting on H such that

W (Q ⊗ Q)W ∗ = Q ⊗ Q

(x ⊗ y W z ⊗ u) =
(
z ⊗ Qy W̃ x ⊗ Q−1u

)
for all x , z ∈ H, y ∈ D(Q) and u ∈ D(Q−1).

Theorem
Let K(H) denote the algebra of all compact operators acting
on H. If W is manageable then

W ∈ M(K(H)⊗ A).
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Scaling group

Theorem
If W is manageable then there exists a one-parameter group
(τt)t∈R of A such that

τt(a) = Q2itaQ−2it

for any a ∈ A and t ∈ R. Moreover
∆oτt = (τt ⊗ τt)o∆

Analytic generator τi/2
Let a, b ∈ A. Then(

a ∈ D(τi/2)
b = τi/2(a)

)
⇐⇒

(
aQ ⊂ Qb

)
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Unitary antipode

Theorem
If W is manageable then

There exists an antiautomorphism

A 3 a 7−→ aR ∈ A

such that
W̃ = W>⊗R .

∆(aR) = ∆op(a)R⊗R

R commutes with all τt
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Antipode

Theorem
Let W be manageable and κ = Ro τi/2. Then

κ is an unbounded linear operator acting on A.
{(ω ⊗ id)W : ω ∈ B(H)∗} is a core for κ and
κ ((ω ⊗ id)W ) = (ω ⊗ id) (W ∗).
D(κ) is a subalgebra of A and
κ(ab) = κ(b)κ(a) for any a, b ∈ D(κ).
κ(a)∗ ∈ D(κ) and κ (κ(a)∗)∗ = a for any a ∈ D(κ)
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Duality

flip(a ⊗ b) = (a ⊗ b)21 = b ⊗ a.

Let W ∈ B(H⊗H) be a manageable multiplicative unitary
and

Ŵ = W ∗
21.

Then Ŵ is a multiplicative unitary. Manageable with

Q̂ = Q and ˜̂W = Ŵ ∗(>⊗>)
21 .

In what follows we denote by Â, ∆̂, τ̂ , R̂ , . . . the C∗-algebra,
comultiplication, scaling group, unitary antipode, . . . related
to Ŵ :

Â = {(id⊗ ω)W ∗ : ω ∈ B(H)∗} ,
∆̂(â) = (W ∗(I ⊗ â)W )21 .
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In what follows we denote by Â, ∆̂, τ̂ , R̂ , . . . the C∗-algebra,
comultiplication, scaling group, unitary antipode, . . . related
to Ŵ :
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S.L. Woronowicz Multiplicative unitary for quantum codouble



Duality

Theorem

W ∈ M(Â⊗ A)

(∆̂⊗ id)W = W23W13,

(τ̂t ⊗ τt)W = W ,

W R̂⊗R = W .
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Double group construction

Twisted flip

σ ∈ Mor
(
A⊗ Â, Â⊗ A

)
:

σ(a ⊗ â) = W (â ⊗ a)W ∗.

Construction

A = A⊗ Â,

∆ = (id⊗ σ ⊗ id)o(∆⊗ ∆̂).

Then ∆ ∈ Mor(A,A⊗ A), ∆ is coassociative.
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Problem

Find multiplicative unitary for (A,∆).

T. Yamanouchi (2000) and T. Masuda, Y. Nakagami and SLW
(2003) found the formula assuming the existence of the Haar
weights. Their formulae use in an essential way the operators
J and Ĵ (of Tomita-Takesaki theory) related to the Haar
weights for the original group and its dual.
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Old formulae

Yamanouchi (2000)

W = ((Ĵ ⊗ J)W (Ĵ ⊗ J))12Ŵ23Ŵ13((Ĵ ⊗ J)W ∗(Ĵ ⊗ J))12W24.

Masuda Nakagami SLW (2003)

W = Ŵ23Ŵ13((J ⊗ J)Ŵ ∗(J ⊗ J))23W24.
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The main formula

Consider operator W acting on H ⊗ H ⊗ H ⊗ H ⊗ H ⊗ H
introduced by

W012345 = W24W14Ŵ25W R̂>⊗id
04 Ŵ R>⊗id

05 . (1)

Then W ∈ B(K ⊗ K ) (where K = H ⊗ H ⊗ H) is a
multiplicative unitary.
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Pentagon equations

WβγWαβW ∗
βγ = WαβWαγ, (2)

WβγW R̂>⊗id
αβ W ∗

βγ = W R̂>⊗id
αβ W R̂>⊗id

αγ , (3)

ŴβγŴαβŴ ∗
βγ = ŴαβŴαγ, (4)

ŴβγŴ R>⊗id
αβ Ŵ ∗

βγ = Ŵ R>⊗id
αβ Ŵ R>⊗id

αγ , (5)

WβγWαγŴαβ = ŴαβWαγ. (6)

(2) is just pentagon equations in standard form. To obtain (3)
it is enough to apply the algebra homomorphism R̂> (the
unitary coinverse on Â followed by the transposition) to the α
leg in (2). Replacing W by the dual Ŵ we obtain (4) and (5).
We know that Ŵαβ = W ∗

βα. With this information (6) reduces
to the pentagon equation in standard form.
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Pentagon equation

W R̂>⊗id
αγ Ŵ R>⊗id

αβ W ∗
βγ = Ŵ R>⊗id

αβ W R̂>⊗id
αγ . (7)

To prove (7) we start with the pentagon equation of the form

W ∗
βγŴαβWαγ = WαγŴαβ

Applying to the both sides the algebra antihomomorphism
>⊗ R̂ ⊗ R (> acts on α, R̂ acts on β and R acts on γ legs)
we obtain

W>⊗R
αγ Ŵ>⊗R̂

αβ W ∗(R̂⊗R)
βγ = Ŵ>⊗R̂

αβ W>⊗R
αγ . (8)

We know that W R̂⊗R = W and Ŵ R⊗R̂ = Ŵ . Inserting in (8),
W R̂⊗R instead of W and Ŵ R⊗R̂ instead of Ŵ we obtain (7).
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Proof

W345678 = W57W47Ŵ58W R̂>⊗id
37 Ŵ R>⊗id

38 .

W345678W012345W∗345678 = W57W47Ŵ58W012345Ŵ ∗
58W

∗
47W

∗
57

= W57W47W24W ∗
47W47W14W ∗

47Ŵ58Ŵ25Ŵ ∗
58

W47W R̂>⊗id
04 W ∗

47Ŵ58Ŵ R>⊗id
05 Ŵ ∗

58W
∗
57

= W57W24W27W14W17Ŵ25Ŵ28

W R̂>⊗id
04 W R̂>⊗id

07 Ŵ R>⊗id
05 Ŵ R>⊗id

08 W ∗
57

= W24Ŵ25W27W14W17Ŵ28W R̂>⊗id
04 Ŵ R>⊗id

05 W R̂>⊗id
07 Ŵ R>⊗id

08

= W012345W012678.

It shows that W is a multiplicative unitary.
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04 Ŵ R>⊗id

05 W R̂>⊗id
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Manageability of W

Theorem
W is manageable with

Q = (Q−1)
> ⊗ Q ⊗ Q

W̃ = Ŵ ∗(>⊗R̂)
25 Ŵ ∗

05 W ∗(>⊗R)
24 W ∗(>⊗R)

14 W ∗
04.

Denoting by τ and R the scaling group and the unitary
antipode for double, we have

τ t(a ⊗ â) = τt(a)⊗ τ̂t(â)

(a ⊗ â)R = Ŵ (aR ⊗ âR̂)Ŵ ∗
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Shorthand formula for W.

W012345 = Wr̂4Ŵr5,

where
r̂ ∈ Rep(Â,H0 ⊗ H1 ⊗ H2),

r ∈ Rep(A,H0 ⊗ H2),

r̂(â) =
(

∆̂2(â)
)R̂>⊗id⊗id

,

r(a) =
(

∆(a)
)R>⊗id

.

Commutation formula for r and r̂ :

(id⊗4 ⊗ σ)
(
Wr̂4Ŵr5

)
= Ŵr4Wr̂5

W45Wr̂5Ŵr4W ∗
45 = Ŵr4Wr̂5.
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Alternative formula for W.

Let
W′ = (id⊗ σ ⊗ id⊗ σ)W.

Then
W′012345 = Ŵ24Ŵ14Ŵ R>⊗id

04 W25W R̂>⊗id
05

= Ŵs4Wŝ5,

where
s ∈ Rep(A,H0 ⊗ H1 ⊗ H2),

ŝ ∈ Rep(Â,H0 ⊗ H2),

s(a) =
(

∆2(a)
)R>⊗id⊗id

,

ŝ(â) =
(

∆̂(â)
)R̂>⊗id

.

S.L. Woronowicz Multiplicative unitary for quantum codouble



Where the main formula came from

∆ is implemented by W : ∆(a) = W (a ⊗ I )W ∗

∆̂ is implemented by Ŵ : ∆̂(â) = Ŵ (â ⊗ I )Ŵ ∗

(∆⊗ ∆̂)(a ⊗ â) = W12Ŵ34(a ⊗ I ⊗ â ⊗ I )
(
W12Ŵ34

)∗
(∆⊗ ∆̂) is implemented by W12Ŵ34.
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(
W12Ŵ34
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Where the main formula came from

(id⊗ flip⊗ id)(∆⊗ ∆̂) is implemented by W13Ŵ24:
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(
W13Ŵ24

)∗
Twisted flip

σ(a ⊗ â) = W (â ⊗ a)W ∗.

∆ = (id⊗ σ ⊗ id)(∆⊗ ∆̂)

∆(a ⊗ â) = W23W13Ŵ24(a ⊗ â ⊗ I ⊗ I )
(
W23W13Ŵ24

)∗
∆ is implemented by W23W13Ŵ24.

Does W = W23W13Ŵ24 ? If YES then we should have
(id⊗ id⊗∆)(W23W13Ŵ24) = W23W13Ŵ24W25W15Ŵ26
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Does W = W23W13Ŵ24 ? If YES then we should have
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Where the main formula came from

Does W = W23W13Ŵ24 ? If YES then we should have
(id⊗ id⊗∆)(W23W13Ŵ24) = W23W13Ŵ24W25W15Ŵ26

Computation show that
(id⊗ id⊗∆)(W23W13Ŵ24) = W23W13Ŵ24W25W15Ŵ26W ∗

45

Let us try W = W23W13Ŵ24X034 with X having second leg in
A and third in Â. X034 commutes with I ⊗ a ⊗ â ⊗ I ⊗ I , so it
does not spoil the implementation formula. Now

(id⊗ id⊗ id⊗∆)W = W01234W01256

is equivalent to

(id⊗∆)X = W23X012X034
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Computation show that
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does not spoil the implementation formula. Now

(id⊗ id⊗ id⊗∆)W = W01234W01256

is equivalent to

(id⊗∆)X = W23X012X034

S.L. Woronowicz Multiplicative unitary for quantum codouble



Where the main formula came from

which in turn is equivalent to
(id⊗∆⊗ ∆̂)X = X013X024Ŵ ∗

23. (9)

Theorem
X is a solution of (9) if and only if

X = V01V̂02,

where
(id⊗∆)V = V01V02,

(id⊗ ∆̂)V̂ = V̂01V̂02,

V01V̂02 = V̂02V01Ŵ ∗
12.
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Where the main formula came from

Compare

(id⊗∆)V = V01V02,

(id⊗ ∆̂)V̂ = V̂01V̂02,

V01V̂02 = V̂02V01Ŵ ∗
12,

(id⊗∆)W = W01W02,

(id⊗ ∆̂)Ŵ = Ŵ01Ŵ02,

Ŵ02W01 = Ŵ ∗
12W01Ŵ02.

Solution:
V = W>⊗R = W R̂>⊗id,

V̂ = Ŵ>⊗R̂ = Ŵ R>⊗id,

X = W R̂>⊗id
01 Ŵ R>⊗id

02

and formula (1) follows.
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01 Ŵ R>⊗id

02

and formula (1) follows.

S.L. Woronowicz Multiplicative unitary for quantum codouble



Example

For the first time, double group construction was used in 1990
to construct a quantum deformation of Lorentz group. With
some abuse of terminology by Lorentz group we mean SL(2,C)
considered as real Lie group.
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Quantum Lorentz group.

0 < q < 1. Quantum Lorentz group is a quantum matrix
group. The algebra A is generated by matrix elements of
SqL(2,C)-matrix:

u =

(
α , β
γ , δ

)
The comultiplication acts on generators in the following way:

(id⊗∆)u = u12u13.

Explicitely(
∆(α) , ∆(β)
∆(γ) , ∆(δ)

)
=

(
α⊗ α + β ⊗ γ , α⊗ β + β ⊗ δ
γ ⊗ α + δ ⊗ γ , γ ⊗ β + δ ⊗ δ

)
.

Does ∆ exist? Show that RHS is a SqL(2,C)-matrix!
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SqL(2,C) - commutation relations

u =

(
α , β
γ , δ

)
is an SqL(2,C)-matrix if

αβ = qβα,
αγ = qγα,

αδ − qβγ = I ,
βγ = γβ,
βδ = qδβ,
γδ = qδγ,

δα− q−1βγ = I ,

γα∗ = qα∗γ,
δα∗ = α∗δ,
γβ∗ = β∗γ,
δγ∗ = q−1γ∗δ,
αα∗ = α∗α + (1− q2)γ∗γ,
γγ∗ = γ∗γ,
δδ∗ = δ∗δ − (1− q2)γ∗γ,

βα∗ = q−1α∗β + q−1(1− q2)γ∗β,
δβ∗ = qβ∗δ − q(1− q2)α∗γ,
ββ∗ = β∗β + (1− q2)(δ∗δ − α∗α)− (1− q2)2γ∗γ.

These are 17 relations of Podleś (1989).
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SqU(2) - commutation relations

u =

(
α , β
γ , δ

)
is an SqU(2)-matrix if u is a unitary

SqL(2,C)-matrix.
Then β = qγ∗, δ = α∗ and

αγ = qγα,
αγ∗ = qγ∗α,
γγ∗ = γ∗γ,

α∗α + γ∗γ = I ,
αα∗ + q2γ∗γ = I .

These are 5 relations of quantum SU(2).
Let A be the algebra generated by matrix elements of
SqU(2)-matrix. Then there exists ∆ ∈ Mor(A,A⊗ A) such
that

(id⊗∆)(u) = u12u13.
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ŜqU(2) - commutation relations

u =

(
α , β
γ , δ

)
is an ŜqU(2)-matrix if u is an upper triangular

SqL(2,C)-matrix with
positive selfadjoint ele-
ments on the diagonal.

Then γ = 0, α∗ = α, δ = α−1 and

αβ = qβα,
ββ∗ = β∗β + (1− q2)(α−2 − α2)

These are 2 relations of quantum ŜU(2).
Let A be the algebra generated by matrix elements of
ŜqU(2)-matrix. Then there exists ∆ ∈ Mor(A,A⊗ A) such
that

(id⊗∆)(u) = u12u13.
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Iwasawa decomposition

Theorem
Let u be an SqL(2,C)-matrix. Then there exist unique
SqU(2)-matrix u and ŜqU(2)-matrix u such that

u = uu.

Moreover the matrix elements of u commutes with matrix
elements of u.

It means that A = A⊗ A and

u = u12u13.
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Comultiplication for SqL(2,C)
We want ∆ ∈ Mor(A,A⊗ A) such that

(id⊗∆)u = u12u13.

(id⊗∆)u12u13 = u12u13u14u15.

(id⊗∆⊗∆)u12u13 = u12u13u14u15.

We need σ ∈ Mor(A⊗ A,A⊗ A) such that

(id⊗ σ)(u13u14) = u13u14.

Solution σ(a ⊗ â) = W (â ⊗ a)W ∗.
Then

∆ = (id⊗ σ ⊗ id)o(∆⊗∆).

Hence Quantum Lorentz Group is the result of
Double Group Construction applied to Quantum SU(2).
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