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Leg numbering notation

(a®@b)p=a@b® |,
(a®b)23:/®a®b,
(3®b)13:a®/®b-

This notation extends (by linearity and strong continuity) to
all operators acting on H ® H
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Leg numbering notation

(a®@b)p=a@b® |,
(a®b)23:/®a®b,
(3®b)13:3®/®b-

This notation extends (by linearity and strong continuity) to
all operators acting on H ® H

Definition

Let W be a unitary operator acting on H ® H. We say that W
is a multiplicative unitary if the following pentagon equation

W23 W12 — Wl2 W13 W23

holds.

S.L. Woronowicz Multiplicative unitary for quantum codouble



G - a locally compact topological group,
‘H - a space of functions on G,
H ® H - a space of functions on G x G,

(Wx)(g, h) = x(gh, h).
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G - a locally compact topological group,
‘H - a space of functions on G,
H ® H - a space of functions on G x G,

(Wx)(g, h) = x(gh, h).
Then

(W23 W12X) (g7 h7 k) = X(g(hk)7 hk? k)
(WiaWisWasx) (g, h, k) = x
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G - a locally compact topological group,
‘H - a space of functions on G,
H ® H - a space of functions on G x G,

(Wx)(g, h) = x(gh, h).
Then

(W23 W12X) (g7 h7 k) = X(g(hk)7 hk? k)
(WiaWisWasx) (g, h, k) = x

PENTAGON g(hk) = (gh)k
EQUATION forall g,h,ke G )~
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G - a locally compact topological group,
‘H - a space of functions on G,
H ® H - a space of functions on G x G,

(Wx)(g, h) = x(gh, h).

Then
(W23 W12X) (g7 h7 k) = X(g(hk)7 hk? k)
(Wi WisWasx) (g, h, k) = x

PENTAGON g(hk) = (gh)k
EQUATION forall g,h,ke G )~

W is unitary iff H is the space of square integrable functions
with respect to the right Haar measure.

Multiplicative unitary for quantum codouble

S.L. Woronowicz



Quantum groups and multiplicative unitaries

G=(AA)

A is a non-degenerate subalgebra of B(#),
A € Mor(A,A® A), A - coassociative.
W is a unitary operator acting on H ® H.

W is a multiplicative unitary for G if
o A={(w®id)W :w e B(H).}"
o Ala) =W(a®@ )W+ foranyac A
o (id® A)W = Wi Wis

Then
Waoz Wio = Wi Wi Was

S.L. Woronowicz
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Transposition of operators

Let # be the Hilbert space complex-congugate to 7. Then we
have an antilinear isometric bijection

Hox+—xcH

and linear antimultiplicative preserving hermitian conjugation
bijection (called transposition)

B(H)>a<+—a' € B(H)

such that a"x = a*x and (X| T‘y) (y|a|x) for all x,y € H
and a € B(H). Transposition is also defined for closed
(densely defined) operators. In particular D(a") = D(a*).
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Manageability

Definition
Multiplicative unitary W € B(H ® H) is called manageable if

there exist unitary W € B(H ® H) and strictly positive
selfadjoint Q acting on H such that

o WRQW =Q® Q
o (x®y|W|zQu) = (E@ Qy‘VNV‘YQQ Q‘IU)
forall x,z € H, y € D(Q) and u € D(Q71).
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Manageability

Definition
Multiplicative unitary W € B(H ® H) is called manageable if

there exist unitary W € B(H ® H) and strictly positive
selfadjoint Q acting on H such that

o WRQW =Q® Q
o (x®y|W|zQu) = (E@ Qy‘VNV‘YQQ Q‘IU)
forall x,z € H, y € D(Q) and u € D(Q71).

Let KC(H) denote the algebra of all compact operators acting
on H. If W is manageable then

W e M(K(H) ® A).
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Scaling group

Theorem

If W is manageable then there exists a one-parameter group
(7¢t)ter of A such that

Tt(a) _ QZitanZit
for any a € A and t € R. Moreover
AoTt = (Tt ® Tt)oA
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Scaling group

Theorem

If W is manageable then there exists a one-parameter group
(7¢t)ter of A such that

Tt(a) _ QZitanZit
for any a € A and t € R. Moreover
AoTt = (Tt ® Tt)oA

Analytic generator 7;/»
Let a,b € A. Then

( Zie(;(/;)) ) — (aQ c Qb)
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Unitary antipode

If W is manageable then

@ There exists an antiautomorphism

A>ar—a"c A
such that
W = WTER,
o A(aR) = A®(a)*F

@ R commutes with all T,

S.L. Woronowicz Multiplicative unitary for quantum codouble



Antipode

Let W be manageable and v = ReT;/,. Then

@ k is an unbounded linear operator acting on A.

o {(w®id)W :w e B(H).} is a core for  and
k((weid)W) = (weid) (W").

@ D(k) is a subalgebra of A and
k(ab) = k(b)x(a) for any a, b € D(k).

o x(a)* € D(k) and k (k(a)*)" = a for any a € D(k)
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flip(a® b) =(a® b)yy = b® a.
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flip(a® b) =(a® b)yy = b® a.

Let W € B(H ® H) be a manageable multiplicative unitary
and

—

Then W is a multiplicative unitary. Manageable with
Q=Qand W=w"®"
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flip(a® b) =(a® b)yy = b® a.

Let W € B(H ® H) be a manageable multiplicative unitary

and e

Then W is a multiplicative unitary. Manageable with
Q=Qand W=w"®"

In what follows we denote by Z, 3, T, ﬁ, ... the C*-algebra,
conlgltiplication, scaling group, unitary antipode, ... related
to W:

A= {(id@w)W™* : w € B(H).},
AG) = (W' (I @3)W),, .
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Duality

W e M(A® A)
(A ®id)W = WasWis,
FRT)W =W,
WReR —
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Double group construction

Twisted flip

o € Mor (A@Z\,Z\@A) :
o(a®3) = WE® a)W*.
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Double group construction

Twisted flip

aeMor<A®7\,2\®A>:

o(a®3) = WE® )W,

| \

Construction

A=AQA,
A= (id®o®id)(A® A).
Then A € Mor(A, A® A), A is coassociative.

A\
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Find multiplicative unitary for (A, A). ’
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Find multiplicative unitary for (A, A). l

T. Yamanouchi (2000) and T. Masuda, Y. Nakagami and SLW
(2003) found the formula assuming the existence of the Haar
weights. Their formulae use in an essential way the operators
J and J (of Tomita-Takesaki theory) related to the Haar
weights for the original group and its dual.
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Old formulae

Yamanouchi (2000)

~ ~

W= (J& )W (I @ J))1oWas Wis((J ® J)W*(J & J))10Whs. |

Masuda Nakagami SLW (2003)

W = Was Was((J @ J)W*(J @ J))a3 W

\

S.L. Woronowicz Multiplicative unitary for quantum codouble



The main formula

Consider operator W actingon HO H@ HQH® H® H
introduced by

Wor2as = Wag Waia Wos W, W=, (1)

Then W € B(K ® K) (where K = H®@ H® H) is a
multiplicative unitary.
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Pentagon equations

Wiy WapWig, = WasWay, (2)

W, WRT®|d Wy, = WRT®|d ng;@id, (3)

Wiy Wog W, = Wes We, (4)

Wﬂw WRT@ud Wy, = WRT@nd W§7T®ida (5)

Wﬂv WMW&B = Waﬁ ch (6)

(2) is just pentagon equations in standard form. To obtain (3)

it is enough to apply the algebra homomorphism RT (the
unitary coinverse on A followed by the transposition) to the «
leg in (2). Replacing W by the dual W we obtain (4) and (5).
We know that Wag Wﬁa With this information (6) reduces
to the pentagon equation in standard form.
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Pentagon equation

RT®|d RT®|d * RT®|d RT®id
WRTed RIS e pyRTeH R (7)
To prove (7) we start W|th the pentagon equation of the form
W, Wi Wery = Wo, Wiy

Applying to the both sides the algebra antihomomorphism
TRR®R (T acts on «, R acts on 3 and R acts on 7v legs)
we obtain

WT@R WT®R W R@R WT®R WIS/@R (8)

We know that WFR®R — w/ and WRER — W, Inserting in (8),
WRER instead of W and WR®R instead of W we obtain (7).

S.L. Woronowicz Multiplicative unitary for quantum codouble



" — /\* % %
W3as678 Wo12345 Wisse76 = Waz Wiz WsgWo10345 Weg Wiy, W
. TS TS s,
= W57 W47 Waq W47 W47 W14 W47 W58 W25 W58
W47 WO T®Id W W58 WO T®Id W
= Wa7 Woq Wor Wi Wiy Whs Whg

TA7RT
WO T@Id WRT®|d W§5T®Id W ®id 57

— W24 W25 W27 W14 W17 W28 WRT@Id WRT@Id WRT@Id WRT@Id

= Wo12345 Wo12678-
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RTde RTde
W345678 — W57 W47 W58 W W .

" — /\* % %
W345678W012345W345678 = W57 W47 W58W012345 ng 47 57
. TS TS TS,
= W57 W47 Waq W47 W47 W14 W47 W58 W25 W58
W47 WO T®Id W W58 WO T®Id W
= Wa7 Woq Wor Wi Wiy Whs Wa

TA7RT
WO T@Id WRT®|d W§5T®Id W ®id 57

— W24 W25 W27 W14 W17 W28 WRT@Id WRT@Id WRT@Id WRT@Id

= Wo12345 Wo12678-
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" — /\* *
W3as678 Wo12345 Wass676 = Waz War WegWo10345 Wg 57
—
— W57 W24 W14 W58 W25 W58
RT@@Id TARTRidT A7 *
Wy Was W ss W7

= Wa7 Woq Wor Wi Wiy W25 W28

TA7RT
WO T@Id WRT®|d W§5T®Id W ®id 57

— W24 W25 W27 W]_4 W]_7 W28 WRT@Id WRT@Id WRT@ICI WRT@Id

= Wo12345 Wo12678-
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% P /\* N *
W3as678 Wo12345 Wayse78 = Waz Wiz WesgWo12345 W g Wy, Wi,

.
= Wsr Wiz Wia Wiy Weg Was Wgg
RT@@ud * 127 \A/RT®id7p/*

Wiz Wy arWessWos =" Wog
= W57 W14 Wiz Was Wag

WRTx.d WRTxud WR id ‘7‘/,‘? id W*
— W24 W25 W27 W]_4 W]_7 W28 WRT@Id WRT®|C| WRT@ICI WRT@Id

= Wo12345 Wo12678-
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" — /\* % %
W3as678 Wo12345 Wisse76 = Waz Wiz WsgWo10345 Weg Wiy, W
. TS TS s,
= W57 W47 Waq W47 W47 W14 W47 W58 W25 W58
W47 WO T®Id W W58 WO T®Id W
= W57 W24 W27 W14 W17 W25 W28

TA7RT
WO T@Id WRT®|d W§5T®Id W ®id 57

— W24 W25 W27 W14 W17 W28 WRT@Id WRT@Id WRT@Id WRT@Id

= Wo12345 Wo12678-
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" — /\* % %
W3as678 Wo12345 Wisse76 = Waz Wiz WsgWo10345 Weg Wiy, W
. TS TS s,
= W57 W47 Waq W47 W47 W14 W47 W58 W25 W58
W47 WO T®Id W W58 WO T®Id W
= Wa7 Woq Wor Wi Wiy Whs Whg

TA7RT
WO T@Id WRT®|d W§5T®Id W ®id 57

— W24 W25 W27 W14 W]_7 W28 WRT@Id WRT@Id WRT@QId WRT@@Id

= W012345W012678 .
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% P /\* N *
W3as678 Wo12345 Wayse78 = Waz Wiz WesgWo12345 W g Wy, Wi,

= W57 W47 W24 WZ.? W47 W14 WZ? W58 W25 W;S
W47 WO T®Id W W58 WO RT®id\a7 W

= Wa7 Woq Wor Wi Wiy Whs Whg
W§4T®Id WO T®Id WRT@Id ng—l—@ld W
RT®|d RT®|d RT®|d RT®|d
— Waq Whs Wy Wig Wiy Wag W& W RT R R TEH Y/ h
= Wo12345 Wo12678-

It shows that W is a multiplicative unitary.
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Manageability of W

W is manageable with

Q=(Q) ®Q®Q
*(TOR * *(TRR TR *
W = WT=R W, wilToR wilTeR) s
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Manageability of W

W is manageable with

Q=(Q) ®Q®Q
*(TOR * *(TRR TR *
W = WT=R W, wilToR wilTeR) s

Denoting by 7 and R the scaling group and the unitary
antipode for double, we have

7e(a®3) = 7e(a) ® 74(3)
(a®3)F = W(aF @ 3°F)W*
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Shorthand formula for W.

Woi23as = Wey Wis,

where

Te Rep(?\,ﬁo ® H; ® H,),
re Rep(A,ﬁo ® Hy),

~ RT®|d®|d
(A a)
RT®id
r( (A a ) .
Commutation formula for r and 7:
(id®4 ® o) (W?4Wr5> = Wﬂl Ws

Was Was W,a Wik = Wig Wis.
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Alternative formula for W.

Let
W= (d®oc®id®o)W.
Then e S
W612345 = Wy Wiy W§4T®Id Was W§5T®Id
— /WS4 W§57
where _
s € Rep(A, Ho ® Hy ® H,),
s e Rep(Z,no ® Hs),
RT®id®id
s(a) = (A*(a ) ;

) RT®id
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Where the main formula came from

A is implemented by W: A(a) = W(a® )W ]
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Where the main formula came from

A is implemented by W: A(a) = W(a® )W ]

A is implemented by W: AQG) = /V\7(3® I)W* J
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Where the main formula came from

A is implemented by W: A(a) = W(a® )W |

A is implemented by W: AQG) = /V\7(3® /)W* J

(A X E)(a ®3) = W12W34(a X / ®3® /) <W12/V\734)
(A® 3) is implemented by W, Wa,.
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Where the main formula came from

A is implemented by W: A(a) = W(a® )W |

A is implemented by W: AQG) = /V\7(3® /)W* J

(A X E)(a ®3) = W12W34(a X / ®3® /) <W12/V\734)
(A® 3) is implemented by W, Wa,.

(ideflipeid)(AA)(ae3) = WisWay(awae /@) (WsWa )
(id ® flip ® id)(A ® 3) is implemented by W3 Wha,.
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Where the main formula came from

(id ® flip ® id)(A ® 3) is implemented by W3 Way:
(id@flipRid)(ARA)(a®3) = WisWa(aa®i®1) <W13W24)

S.L. Woronowicz Multiplicative unitary for quantum codouble



Where the main formula came from

(id ® flip ® id)(A ® 3) is implemented by W3 Way:
(id@flipRid)(ARA)(a®3) = WisWa(aa®i®1) <W13W24>

o

Twisted flip

o(a®3) = WE® )W
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Where the main formula came from

(id ® flip ® id)(A ® 3) is implemented by W3 Way:
(id@flipRid)(ARA)(a®3) = WisWa(aa®i®1) (W13W24)

Twisted flip

o(a®3) = WE® )W

A=(d®o®id)(A®A)
A(a®3a) = Was W13W24(a RaxIel) <W23 W13W24>
A is implemented by Whs W3 Woy.
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Where the main formula came from

(id @ flip® id)(A ® ﬁ) is implemented by W3 Way:
(id@flipRid)(ARA)(a®3) = WisWa(aa®i®1) <W13W24)

Twisted flip

o(a®3) = WE® )W

A=(d®o®id)(A®A)
A(a®3a) = Was W13W24(a RaxIel) <W23 W13W24>
A is implemented by Whs W3 Woy.

Does W = W23 W13W24 ?
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Where the main formula came from

(id @ flip® id)(A ® ﬁ) is implemented by W3 Way:
(id@flipRid)(ARA)(a®3) = WisWa(aa®i®1) <W13W24)

Twisted flip

o(a®3) = WE® )W

A=(d®o®id)(A®A)
A(a®3a) = Was W13W24(a RaxIel) <W23 W13W24>
A is implemented by Whs W3 Woy.

Does W = Wh3 W13W24 ? If YES then we should have
(id @ id @ A)(WasWisWhs) = Woz W3 Whay Wos Wis Wae
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Where the main formula came from

Does W = Wh3 W13/V|724 7 If YES then we should have
(id ®id @ A)(Waz Wiz Was) = Waz W3 Wae Wos Wis Was
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Where the main formula came from

Does W = Wh3 W13/V|724 7 If YES then we should have
(id ®id @ A)(Waz Wiz Was) = Waz W3 Wae Wos Wis Was

Computation show that - _
(id ® id @ A)(Was W3 Wha) = Was Wi3 Woy Was Wis Wae W5
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Where the main formula came from

Does W = Wh3 W13/V|724 7 If YES then we should have
(id ®id @ A)(Waz Wiz Was) = Waz W3 Wae Wos Wis Was

Computation show that - _
(id ® id @ A)(Was W3 Wha) = Was Wi3 Woy Was Wis Wae W5

Let us try W = Wos W13W24X034 with X having second leg in
A and third in A.
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Where the main formula came from

Does W = Wh3 W13/V|724 7 If YES then we should have
(id ®id @ A)(Waz Wiz Was) = Waz W3 Wae Wos Wis Was

Computation show that - _
(id ® id @ A)(Was W3 Wha) = Was Wi3 Woy Was Wis Wae W5

Let us try W = Wos W13W24X034 with X having second leg in
A and third in A. Xy32 commutes with / @ a®a® [ ® 1, so it
does not spoil the implementation formula.
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Where the main formula came from

Does W = Wh3 W13/V|724 7 If YES then we should have
(id ®id @ A)(Waz Wiz Was) = Waz W3 Wae Wos Wis Was

Computation show that - _
(id ® id @ A)(Was W3 Wha) = Was Wi3 Woy Was Wis Wae W5

Let us try W = Wos W13W24X034 with X having second leg in
A and third in A. Xy32 commutes with / @ a®a® [ ® 1, so it
does not spoil the implementation formula. Now

(d®id ®@id @ A)W = Wo1234Woros6
is equivalent to

(id ® A)X = WasXo12X034
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Where the main formula came from

which in turn is equivalent to
(id ® A @ A)X = Xo13Xo04 Wis. (9)
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Where the main formula came from

which in turn is equivalent to
(id ® A @ A)X = Xo13Xo04 Wis. (9)

Theorem

X is a solution of (9) if and only if
X = Vor Voo,

where
(Id X A) V = V01 V027

(Id X A) V V01 Vog,
Vor Voz = Voo Vo Wy

S.L. Woronowicz Multiplicative unitary for quantum codouble



Where the main formula came from

(Id ® A)V V01 \/02,
(Id ® A)V V01 V02,
VOl V02 — V02 VOl W127
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Where the main formula came from

Compare
(Id & A)V V01 \/02, (Id ® A)W W01 Woz,
(Id X A)V V01 V02, (Id X A)W W01 WOQ,
VOl V02 - V02 VOl W127 W02 WOl - W12 WOl W02~
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Where the main formula came from

Compare
(Id & A)V V01 \/02, (Id ® A)W W01 Woz,
(Id X A)V V01 V02, (Id X A)W W01 WOQ,
VOl V02 — V02 VOl W127 W02 WOl - W12 WOl W02
Solution:

V WT®R WRT@IC]

~

V WT®R WRT@Id ’
1 1/RTRidTA7RT®id
X =Wy W,

and formula (1) follows.
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For the first time, double group construction was used in 1990
to construct a quantum deformation of Lorentz group. With
some abuse of terminology by Lorentz group we mean SL(2, C)

considered as real Lie group.
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Quantum Lorentz group.

0 < g < 1. Quantum Lorentz group is a quantum matrix
group. The algebra A is generated by matrix elements of

SqL(2, C)-matrix:
b ( a, )
Yo 0

The comultiplication acts on generators in the following way:
(Id & A)U = UjoU13.
Explicitely

Ale) ,AB) \ [ a®a+R7,a®P+L®6
AM),A>0) ] \7®a4+i®y ,700+5®45 )’

Does A exist? Show that RHS is a 5,L(2, C)-matrix!
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SqL(2,C) - commutation relations

9

u= ( ? ’ g ) is an S,L(2, C)-matrix if

aff = qfa, o =qa’y,

ay = qya, o0a* = a*d,
a0 —qpy =1, V6" = [y,
By=9B8, 07" =q iy,
B6=qdB, aa*=a*a+(1-qg*)7*,
Y0 =qdy, =",
da—q 1By =1, §0* = 6*6 — (1 — ¢®)v*,

Ba*=q a8+ q Y1 - g*)Vv s,

§3* = qB*0 — q(1 — g*)a*y,

BB =30+ (1= g*)(0"0 — a”a) = (1 = ¢°)*y™.
These are 17 relations of Podles (1989).
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SqU(2) - commutation relations

u= ( < ? ) is an S,U(2)-matrix if u is a unitary
T SqL(2, C)-matrix.
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SqU(2) - commutation relations

u= ( < ? ) is an S,U(2)-matrix if u is a unitary
T SqL(2, C)-matrix.
Then 5 = gv*, 6 = a* and

ay = gqya,
ay’ =gy a,
=",

ata+ oty =1,
ac* + @*y*y = 1.

These are 5 relations of quantum SU(2).
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SqU(2) - commutation relations

u= ( < ? ) is an S,U(2)-matrix if u is a unitary
T SqL(2, C)-matrix.
Then 5 = gv*, 6 = a* and

ay = gqya,
ay’ =gy a,
=",

ata+ oty =1,
ac* + @*y*y = 1.

These are 5 relations of quantum SU(2).
Let A be the algebra generated by matrix elements of
S,U(2)-matrix. Then there exists A € Mor(A, A® A) such
that

(Id X A)(U) = U1oU13.
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SqU(2) - commutation relations

= ( ’ ) is an Sq/UE)—matrix if 1 is an upper triangular
’ SqL(2, C)-matrix with
positive selfadjoint ele-
ments on the diagonal.
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SqU(2) - commutation relations

= ( ’ ) is an Sq/UE)—matrix if 1 is an upper triangular
’ SqL(2, C)-matrix with
positive selfadjoint ele-
ments on the diagonal.
Then v =0, o* =0, 0 = o~ ! and
= qpa,
* (% +(1_q2)( -2 2)

—

These are 2 relations of quantum SU(2).
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SqU(2) - commutation relations

= ( ’ ) is an Sq/UE)—matrix if 1 is an upper triangular
’ SqL(2, C)-matrix with
positive selfadjoint ele-
ments on the diagonal.
Then v =0, o* =0, 0 = o~ ! and
= qpa,

f = P04 (1— )02 — a?)

These are 2 relations of quantum %
Let A be the algebra generated by matrix elements of

—

S,U(2)-matrix. Then there exists /A € Mor(A, A ® A) such
that

(id ® A)(v) = v12013.

S.L. Woronowicz Multiplicative unitary for quantum codouble



lwasawa decomposition

Theorem

Let u be an S,L(2,C)-matrix. Then there exist unique

—

S,U(2)-matrix u and S,U(2)-matrix v such that
u=uu.

Moreover the matrix elements of u commutes with matrix
elements of u.
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lwasawa decomposition

Theorem

Let u be an S,L(2,C)-matrix. Then there exist unique

—

S,U(2)-matrix u and S,U(2)-matrix v such that
u=uu.

Moreover the matrix elements of u commutes with matrix
elements of u.

[t means that A= A® A and

U = ujals3.

S.L. Woronowicz Multiplicative unitary for quantum codouble



Comultiplication for S,L(2,C)

We want A € Mor(A, A® A) such that

(Id &® A)U — UjpU713.
(id ® A)uiptinz = Urat13U14L15.
(id ® A ® A)uiatinz = urpUi3ti1aliss.
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Comultiplication for S,L(2,C)

We want A € Mor(A, A® A) such that

(Id &® A)U — UjpU713.
(id ® A)uiptinz = Urat13U14L15.
(id ® A ® A)uiatinz = urpUi3ti1aliss.

We need 0 € Mor(A® A, A® A) such that

(id ® 0)(v130114) = U13U14.
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Comultiplication for S,L(2,C)

We want A € Mor(A, A® A) such that

(Id ® A)U — UjpU713.
(id ® A)uiptinz = Urat13U14L15.

(id ® A @ A)uiptnz = Uiplizlialiys.

We need 0 € Mor(A® A, A® A) such that

(id ® 0)(v130114) = U13U14.

Solution ola®a)=W(@E®a)W",
Then
A=(d®o®id)(A® A).

Hence Quantum Lorentz Group is the result of
Double Group Construction applied to Quantum SU(2).
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