Subfactors in relation with quantum groups \rightarrow Reference

Jean-Michel Vallin

MAPMO
October 72010 Caen

Von Neumann algebras

Definition

A von Neumann algebra M is any weakly closed *-unitary subalgebra of $\mathcal{L}(H)(H$: Hilbert space)

- if $X \subset \mathcal{L}(H)$ set $X^{\prime}=\{a \in \mathcal{L}(H) / \forall x \in X, x a=a x\}$

Proposition

If M is a unitary ${ }^{*}$-subalgebra of $\mathcal{L}(H), M \mathrm{VN}$ algebra iff $M^{\prime \prime}=M$

Examples of von Neumann algebras

Commutative VN alg : $L^{\infty}(X, \mu)\left(H=L^{2}(X, \mu)\right)$
If G is a loc compact group with Haar measure, if $s \in G, f \in L^{2}(G)$ $\lambda(s) f(t)=f\left(s^{-1} t\right)$ the $\lambda(s)$'s generates $\quad \mathcal{L}(G) \subset \mathcal{L}\left(L^{2}(G)\right)$

$$
\mathcal{L}(G)^{\prime}=\mathcal{R}(G)
$$

Definition

A Factor is any VN algebra M such that $Z(M)=M \cap M^{\prime}=\mathbb{C} 1$

$$
\mathcal{L}(G) \text { factor iff } G \text { ICC }
$$

Classification of factors

$M=\int M(x) d x$ where $M(x)$ is a factor (36') (Murray von Neumann) \rightarrow 75' (Connes)
Classification of separable hyperfinite factors $\left(M=\overline{U_{n} M_{n}}\right) \operatorname{dim} M_{n}$ finite $)$

Type	VNalg
I_{n}	$M_{n}(\mathbb{C})$
I_{∞}	$\mathcal{L}(H)$
I_{1}	$R \quad($ Connes $)$
I_{∞}	$R \bar{\otimes} \mathcal{L}(H) \quad$ (Connes)
$I I I$	$\ldots .$.

$I_{1}: \exists \tau: M \rightarrow \mathbb{C}$ lin.form $\tau\left(x^{*} x\right)>0$ if $x \neq 0$, trace: $\tau(x y)=\tau(y x)$ $I_{\infty}: \tau$ is a weight ("unbounded")

Inclusions of VN alg.

$$
M_{0} \subset M_{1} \quad \text { to be classified }
$$

Basic construction (Jones 83')

Depth 2 : $M_{0}^{\prime} \cap M_{1} \subset M_{0}^{\prime} \cap M_{2} \subset M_{0}^{\prime} \cap M_{3} \subset \ldots .$. basic Irreducible: $M_{0}^{\prime} \cap M_{1}=\mathbb{C}$

Index for subfactors

$M_{0} \subset M_{1}$, type I_{1}-subfactors of $\mathcal{L}(H)$
Index: $\left[M_{1}: M_{0}\right]=\frac{\operatorname{dim}_{M_{0}}(H)}{\operatorname{dim}_{M_{1}}(H)}$

Theorem Jones 83'

$\left\{\left[M_{1}: M_{0}\right] / M_{i}\right.$ type $\left.I_{1}\right\}=\left\{4 \cos ^{2} \frac{\pi}{n} / n=3 \ldots.\right\} \cup[4, \infty]$

QUESTION: Is any number in $[4, \infty]$ obtained for an irreducible inclusion?

Actions of groups on VN alg.

Action of G on M : continous homomorphism $\alpha: G \rightarrow \operatorname{Aut}(M)$

Examples

- If G acts on (X, μ), it acts on $L^{\infty}(X, \mu): \alpha_{g}(f)(t)=f(t \triangleleft g)$
- If G is finite $\left(G \subset S_{n} \subset S_{\infty}(\right.$ fini.support $\left.)\right)$ it acts on $R=\overline{{\underset{i \in S}{\infty}}_{\otimes}^{\otimes}} M_{2}(\mathbb{C})$ by Bernoulli shifts: $\quad \alpha_{g}\left(\left(a_{f}\right)_{f \in S_{\infty}}\right)=\left(a_{g \circ f}\right)_{f \in S_{\infty}}$

Associated VN alg

- $M^{G}=\left\{m / \forall g \alpha_{g}(m)=m\right\}$ if $H<G:\left[M^{H}: M^{G}\right]=[G: H]$
- $\left.M \rtimes G \subset \mathcal{L}\left(H \otimes L^{2}(G)\right)\right)\left(=\mathcal{L}\left(L^{2}(G, H)\right)\right.$:

$$
\begin{gathered}
<\left(g \mapsto \alpha_{g}(m)\right)_{m \in M}, 1 \otimes \mathcal{R}(G)> \\
\alpha\left(M^{G}\right) \subset \alpha(M) \subset M \rtimes G
\end{gathered}
$$

Quantum groups in VN alg. framework

Definition Kustermans Vaes 99'

(M, Γ, ϕ, ψ) quantum group:

- $\Gamma: M \rightarrow M \bar{\otimes} M \quad(\Gamma \otimes i) \Gamma=(i \otimes \Gamma) \Gamma$
- ϕ, ψ n.sf.f. weights on $M \forall x>0$ in M :
$(\phi \otimes i) \Gamma(x)=\phi(x) 1$ and $(i \otimes \psi) \Gamma(x)=\psi(x) 1$
Examples:
- $\operatorname{dim} M<\infty:$ Kac algebras $(M, \Gamma, \kappa, \epsilon)$
- Commutative case: $M=L^{\infty}(G), \quad \Gamma(f)(x, y)=f(x y)$

$$
\phi(f)=\int_{G} f(s) d s, \psi(f)=\int_{G} f(s) d^{\prime} s
$$

- Symmetric case $(\varsigma \Gamma=\Gamma): M=\mathcal{R}(G), \quad \Gamma(\rho(s))=\rho(s) \otimes \rho(s)$ $\phi(\rho(f))=\psi(\rho(f))=f(e)$

Actions of Quantum groups on VN alg.

Definition

Action of (M, Γ, ϕ, ψ) on $\mathrm{A}(\mathrm{VN}$ alg): $\alpha: A \rightarrow A \otimes M$

$$
(\alpha \otimes i) \alpha=(i \otimes \Gamma) \alpha
$$

Examples:

- M acts on itself using Γ
- Commutative case: $M=L^{\infty}(G), L^{\infty}(G) \otimes M=L^{\infty}(G, M)$: there exists an action $g \mapsto \alpha_{g}$ such that: $\alpha(m)(g)=\alpha_{g}(m)$

Assoc. VN alg.: $M^{\alpha}=\{m \in M / \alpha(m)=m \otimes 1\}, A \rtimes M$

A theorem and its previous reciproque!

Theorem Vaes 01' and 05'

$\alpha(M) \subset A \rtimes M$ is always depth 2. It exists a type III factor A on which any quantum group \boldsymbol{M} acts with $\alpha(M) \subset A \rtimes M$ irreducible (strictly outer), but not any quantum group can act stric. out. on any factor.

Theorem Enock Nest 96'

- Let $M_{0} \subset M_{1}$ a regular depth 2 irreducible inclusion ($M_{0}^{\prime} \cap M_{1}=\mathbb{C}$), then $M_{0}^{\prime} \cap M_{2}$ and $M_{1}^{\prime} \cap M_{3}$ have can. struct. of quantum group.
- There exists an action a of $M_{1}^{\prime} \cap M_{3}$ on M_{1}, such that: $M_{0} \subset M_{1} \subset M_{2} \equiv a\left(M_{1}^{\mathbf{a}}\right) \subset a\left(M_{1}\right) \subset M_{1} \rtimes_{\mathbf{a}}\left(M_{1}^{\prime} \cap M_{3}\right)$

The finite index case

Theorem Szymanski 94'

- Référence

$M_{0} \subset M_{1}: I_{1}$ factors (τ), irreducible, depth 2, finite index $\lambda=\left[M_{1}: M_{0}\right]$ $M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots$. basic construction, then:

- $A=M_{0}^{\prime} \cap M_{2}, B=M_{1}^{\prime} \cap M_{3}$: finit. Kac algebras in duality there exists an action a of B on M_{1}, such that $M_{0}=M_{1}^{\mathbf{a}}$, and $M_{2}=M_{1} \rtimes_{\mathbf{a}} B$
- $\left[M_{1}: M_{0}\right]=\operatorname{dim} B$

Canonical bracket: $\left.\langle a, b\rangle=\lambda^{-2} \tau\left(a e_{2} e_{1} b\right) .<\Gamma(a), b \otimes c\right\rangle=\langle a, b c\rangle$ $\left.\langle\kappa(a), b\rangle=\overline{\left\langle a^{*}, b^{*}\right\rangle} \quad \epsilon(a)=<a, 1\right\rangle$ YOU CAN COMPUTE!!!!!!

A family of examples

Definition

A matched pair H, K of subgroups of a finite group G is any pair of subgroups such that: $G=H K=\{h k / h \in H, k \in K\}$ and $H \cap K=\{e\}$

Let us consider an outer and proper action of G on $R: \alpha: G \rightarrow A u t R$ if $\mathrm{g} \neq \mathrm{e}$ then $\alpha_{\mathrm{g}} \notin \operatorname{IntR}$

Theorem

If H, K matched pair of finite groups and $G=H K$ acts properly and outerly on the hyperfinite type I_{1} factor R, then:

- $M_{0}=R^{H} \subset M_{1}=R \rtimes K$ is in the conditions of Sym th.
- The quantum groupoids $M_{0}^{\prime} \cap M_{2}$ and $M_{1}^{\prime} \cap M_{3}$ can be expressed with a double groupoid and some crossed products.

Quantum groups associated with matched pairs

1) The double groupoids $\mathcal{T}, \mathcal{T}^{\prime}$.
$\mathcal{T}=\left\{k_{h^{\prime}}^{h} k / h, h^{\prime} \in H, k, k^{\prime} \in K \quad h k=k^{\prime} h^{\prime}\right\}$
$\mathcal{T} \rightarrow \mathcal{T}^{\prime}$: transposition

\mathcal{T} is a groupoid with basis K and a groupoid with basis H

- Horizontal product:

- Vertical product

- Horizontal unities : $k{\underset{e}{\square}}_{e}^{e} k$, and vertical $e \underbrace{h}_{h} e$
- Inverse: $(c \stackrel{a}{\square}$

$b)^{-B}=c^{-1}{\underset{a}{\square}}_{d}^{d} b^{-1}$

The VN algebras $\mathbb{C} \mathcal{T}$ and $\mathbb{C} \mathcal{T}^{\prime}$

- Product: $\left(\sum_{t \in \mathcal{T}} a_{t} t\right) \cdot\left(\sum_{t^{\prime} \in \mathcal{T}} b_{t^{\prime}} t^{\prime}\right)=\sum_{t \in \mathcal{T}} \sum_{\substack{t_{1}+t_{2}=t}}\left(a_{t_{1}} b_{t_{2}}\right) t$
- Involution: $\left(\sum_{t \in \mathcal{T}} a_{t} t\right)^{*}=\left(\sum_{t \in \mathcal{T}} \overline{a_{t}} t^{-D}\right)$
$\mathbb{C} \mathcal{T}$ and $\mathbb{C} \mathcal{T}^{\prime}$ are crossed products:

$$
g=k h, h, k \text { unique, } g=p_{1}(g) p_{2}(g)
$$

Mutual actions of H and K

$$
h \triangleright k=p_{1}(h k), \quad h \triangleleft k=p_{2}(h k): \quad h k=(h \triangleright k)(h \triangleleft k)
$$

$C(K) \rtimes H \quad$ generated by $\quad V_{h} \chi_{k}$.

Proposition:

$V_{h} \chi_{k} \mapsto h \triangleright k{\underset{h}{h \triangleleft k} k}_{h}^{l}$ isomorphism between $C(K) \rtimes H$ and $\mathbb{C} \mathcal{T}$

Quantum groups associated with matched pairs

Theorem [Andruskiewicz-Natale] • Reference

$\mathbb{C} \mathcal{T}$ has a quantum group structure:

- $\Gamma(t)=\sum_{\substack{B \\ t_{1} t_{1}=t \\ H}} t_{1} \otimes t_{2}=\sum_{\substack{\mathcal{B} \\ t_{1} \mathcal{B}_{2}=t \\ H}} t_{1} \otimes t_{2}$
- $\kappa(t)=t^{-D B}$
- $\epsilon(t)=\left\{\begin{array}{l}1 \text { if } t \text { of the form } e \square_{h}^{h} e \\ 0 \text { otherwise }\end{array}\right.$

The inclusion $R^{H} \subset R \rtimes K$ (matched pairs)

Theorem Szymanski JMV

H, K matched pairs, $G=H K$ acts outerly and properly on R,

- $M_{0}=R^{H} \subset M_{1}=R \rtimes K$ is in NV th conditions
- There exists an isomorphism $\theta_{1}: M_{0}^{\prime} \cap M_{2} \rightarrow \mathbb{C} \mathcal{T}$
- There exists an isomorphism $\theta_{J}: M_{1}^{\prime} \cap M_{3} \rightarrow \mathbb{C} \mathcal{T}^{\prime}$
- The dualities are preserved: , $\forall x \in \mathcal{T}, x^{\prime} \in \mathcal{T}^{\prime}:<\theta_{l}^{-1}(x), \theta_{J}^{-1}\left(x^{\prime}\right)>=\delta_{x^{\prime}, x^{t}}$

Quantum groupoid: $(А, Г, \kappa, \epsilon)$?

Définition

- A : finite dim. VN algebra $\left(A=\underset{i=1, . . k}{\oplus} M_{n_{i}}(\mathbb{C})\right)$
- $\Gamma: A \rightarrow A \otimes A: *$-homom.
$(\Gamma \otimes i) \Gamma=(i \otimes \Gamma) \Gamma \quad(\Gamma(1) \neq 1$, en gén. $)$
- $\kappa: A \rightarrow A$, linear antimultiplicative :
$(\kappa \circ *)^{2}=i$
$\varsigma(\kappa \otimes \kappa) \Gamma=\Gamma \circ \kappa$
$(m(\kappa \otimes i) \otimes i)(\Gamma \otimes i) \Gamma(x)=(1 \otimes x) \Gamma(1)$
(where $\mathrm{m}(\mathrm{a} \otimes \mathrm{b})=\mathrm{ab}$)
- $\epsilon: A \rightarrow \mathbb{C}$: linear
$(\epsilon \otimes i) \Gamma=(i \otimes \epsilon) \Gamma=i$
$(\epsilon \otimes \epsilon)((x \otimes 1) \Gamma(1)(1 \otimes y))=\epsilon(x y)$
- $A_{t}:=\{a \in A / \Gamma(a)=(a \otimes 1) \Gamma(1)=\Gamma(1)(a \otimes 1)\}$
$A_{s}:=\{a \in A / \Gamma(a)=(1 \otimes a) \Gamma(1)=\Gamma(1)(1 \otimes a)\}$

Commutative quantum groupoid

\mathcal{G} finite groupoid

- $A=L^{\infty}(\mathcal{G})\left(\subset \mathcal{L}\left(I^{2}(\mathcal{G})\right)\right), \quad A \otimes A=L^{\infty}(\mathcal{G} \times \mathcal{G})$
- $\Gamma(f)(x, y)=\left\{\begin{array}{l}f(x y) \quad \text { x, y composables } \\ 0 \text { otherwise }\end{array}\right.$
- $\kappa(f)(x)=f\left(x^{-1}\right)$
- $\epsilon(f)=\sum_{u \in \mathcal{G}^{0}} f(u)$
- $A_{t}=\left\{\phi \circ r / \phi \in L^{\infty}\left(G^{0}\right)\right\}, A_{s}=\left\{\phi \circ s / \phi \in L^{\infty}\left(G^{0}\right)\right\}$

Symmetric example

\mathcal{G} finite groupoid

- $\hat{A}=\mathcal{L}(\mathcal{G})(=\mathbb{C}(\mathcal{G})) \quad\left(\subset \mathcal{L}\left(I^{2}(\mathcal{G})\right)\right)$
- $\hat{\Gamma}(\lambda(s))=\lambda(s) \otimes \lambda(s)$
- $\hat{\kappa}(\lambda(s))=\lambda\left(s^{-1}\right)$
- $\hat{\epsilon}(\lambda(s))=1$
- $\hat{A}_{t}=\hat{A}_{s}=A_{t}$

Quantum groupoid action

Definition

Right action of $(A, \Gamma, \kappa, \epsilon)$ on a VN alg $M:(b, \alpha)$

- $b: A_{t} \hookrightarrow M: 1$ to 1 , unital *-antihom.
- $\alpha: M \hookrightarrow M \otimes A, 1$ to 1^{*}-hom. $(\alpha(1) \neq 1)$
$\forall n \in A_{t}: \alpha(1)(b(n) \otimes 1)=\alpha(1)(1 \otimes n) \quad\left(\alpha(M) \subset M_{b} \underset{A_{t}}{\star} A_{i}\right)$
- $(\alpha \otimes i) \alpha=(i \otimes \Gamma) \alpha$
- $\forall n \in A_{t}: \quad \alpha(b(n))=\alpha(1)(1 \otimes \kappa(n))$

Crossed product
$M \ltimes A:=<\alpha(M) \cup \alpha(1)\left(1 \otimes \hat{A}^{\prime}\right)>\left(\subset\left(M \otimes \mathcal{L}\left(H_{A}\right)\right)_{\alpha(1)}\right)$
Fixed point algebra
$M^{A}:=\{m \in M / \alpha(m)=\alpha(1)(m \otimes 1)\}$

$$
M^{A} \subset M \ltimes A
$$

Quantum groupoids and I_{1} subfactors

Theorem Nikshych-Vainerman 00', David 05'

Référence

$M_{0} \subset M_{1}: I_{1}$ factors (τ), depth 2, finite index $\lambda=\left[M_{1}: M_{0}\right]$
$M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots$. basic construction, then:

- $A=M_{0}^{\prime} \cap M_{2}, B=M_{1}^{\prime} \cap M_{3}$: quantum groupoids, $M_{0}^{\prime} \cap M_{1}$ common basis, it exists a act. of B on M_{1} with $M_{0}=M_{1}^{\mathbf{a}}$, and $M_{2}=M_{1} \rtimes_{\mathbf{a}} B$
- $\left[M_{1}: M_{0}\right]=\left[B: B_{t}\right]$
- there exists a natural Galois correspondance between the lattice of intermediate subfactors $M_{1} \subset P \subset M_{2}$ and the lattice of left coideal *-subalgebras of $M_{1}^{\prime} \cap M_{2}$

Bracket : $\langle a, b\rangle=\lambda^{-2} \tau\left(a h e_{2} e_{1} h b\right)$. $\langle\Gamma(a), b \otimes c\rangle=\langle a, b c\rangle$
$\left.\langle\kappa(a), b\rangle=\overline{\left\langle a^{*}, b^{*}\right\rangle} \quad \epsilon(a)=<a, 1\right\rangle$ YOU CAN COMPUTE

Quantum groupoids and I_{1} subfactors

Theorem Nikshych-Vainerman,David

Référence
$M_{0} \subset M_{1}: I_{1}$ factors (τ), depth 2, finite index $\lambda=\left[M_{1}: M_{0}\right]$
$M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots$. basic construction, then:

- $A=M_{0}^{\prime} \cap M_{2}, B=M_{1}^{\prime} \cap M_{3}$: quantum groupoids, $M_{0}^{\prime} \cap M_{1}^{\prime}$ common basis, it exists a act. of B on M_{1} with $M_{0}=M_{1}^{\mathbf{a}}$, and $M_{2}=M_{1} \rtimes_{\mathbf{a}} B$
- $\left[M_{1}: M_{0}\right]=\left[B: B_{t}\right]$
- there exists a natural Galois correspondance between the lattice of intermediate subfactors $M_{1} \subset P \subset M_{2}$ and the lattice of left coideal *-subalgebras of $M_{1}^{\prime} \cap M_{2}$

Bracket : $<a, b>=\lambda^{-2} \tau\left(a h e_{2} e_{1} h b\right) .<\Gamma(a), b \otimes c>=<a, b c>$
$<\kappa(a), b>=\overline{<a^{*}, b^{*}>} \quad \epsilon(a)=<a, 1>\quad$ YOU CAN COMPUTE

Adapted pairs of groups

Définition

H, K finite subgroups of G, adapted pair if:

$$
G=H K=\{h k / h \in H, k \in K\}
$$

Remark: $\quad g=h k=h x x^{-1} k \quad x \in H \cap K$

One can define the double groupoids \mathcal{T} and \mathcal{T}^{\prime}, the quantum groupoids ($\mathbb{C} \mathcal{T}, \mathbb{C} \mathcal{T}^{\prime}$), they still are crossed products and finally:

The inclusion $R^{H} \subset R \rtimes K$ (adapted pairs of groups)

Theorem JMV 08'

If H, K adapted pair of groups, and let $G=H K$ act outerly and properly on R,

- $M_{0}=R^{H} \subset M_{1}=R \rtimes K$ is in NV theorem conditions
- It exists an isomorphism $\theta_{l}: M_{0}^{\prime} \cap M_{2} \rightarrow \mathbb{C} \mathcal{T}$
- It exists an isomorphism $\theta_{J}: M_{1}^{\prime} \cap M_{3} \rightarrow \mathbb{C} \mathcal{T}^{\prime}$
- The dualities are preserved: $\forall x \in \mathcal{T}, x^{\prime} \in \mathcal{T}^{\prime}:<\theta_{l}^{-1}(x), \theta_{\jmath}^{-1}\left(x^{\prime}\right)>=|H \cap K| \cdot \delta_{x^{\prime}, x^{t}}$

Remarks on the index

Remarks

- $\left[R \rtimes K: R^{H}\right]=|H||K| \in \mathbb{N}$
- Quantum groupoids actions lead to algebraic integers
- In order to obtain other values of the index (non irreducible case), one can use a reconstruction theorem which gives quantum groupoids from fusion categories (L. Vainerman's talks)
Example: the Tambara Yamagami categories give all numbers of the form $(n+\sqrt{n})^{2}$ (C.Mevel's Thesis 2010 in Caen)
- You need (not finite) quantum groups actions on not hyperfinite factors to answer exactly Jones question (see tomorrow Fima's talk)......

REFERENCES:

- On inclusions of von Neumann algebras: V.F.R.Jones Index for subfactors Invent. Math 72 (1983), F.M. Goodman, P. de la Harpe, V.F.R. Jones "Coxeter Graphs and Towers of Algebras" MSRI Publ. 14, Springer Verlag, (1989)
- On locally compact quantum groups : J. Kustermans and S. Vaes, Ann. Sci. ENS 33 (2000) and Math. Scand. 92 (2003). S. Vaes, J.Funct. Anal. 180 (2001) and J. reine angew. Math. 578 (2005)
- On geometrical construction of locally compact quantum groups: W.Szymanski Proc.Am.Mat.Soc. 120:2 (1994), M.E + R. Nest, J. Funct. Anal., 137 (1996)
- On quantum group(oid)s associated with inclusions: M.Enock+JMV JFA 172 (2000), D.Nikshych+L.Vainerman JFA 171 and 178 (2000) M.C. David, JOT 54:1(2005) and M.C.David+ N.Thiery [Math.QA]: 0812.3044v2)
- On double groupoids related with quantum group(oid)s: N.Andruskiewitsch+S.Natale : Adv.Math 200 (2006), JMV Journal of algebra 314:2 (2007)+ Relative matched pairs of finite groups from depth two inclusion to quantum groupoids JFA 258 (2008))

