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Von Neumann algebras

Definition

A von Neumann algebra M is any weakly closed *-unitary subalgebra of L(H) (H :
Hilbert space)

if X ⊂ L(H) set X ′ = {a ∈ L(H)/∀x ∈ X , xa = ax}

Proposition

If M is a unitary *-subalgebra of L(H), M VN algebra iff M ′′ = M
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Examples of von Neumann algebras

Commutative VN alg : L∞(X , µ) (H = L2(X , µ))

If G is a loc compact group with Haar measure, if s ∈ G , f ∈ L2(G )
λ(s)f (t) = f (s−1t) the λ(s)’s generates L(G ) ⊂ L(L2(G ))

L(G )′ = R(G )

Definition

A Factor is any VN algebra M such that Z (M) = M ∩M ′ = C1

L(G ) factor iff G ICC
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Classification of factors

M =
∫

M(x)dx where M(x) is a factor
(36′) (Murray von Neumann)→ 75’ (Connes)
Classification of separable hyperfinite factors (M = ∪

n
Mn) dim Mn finite)

Type VNalg
In Mn(C)
I∞ L(H)
II1 R (Connes)
II∞ R⊗L(H) (Connes)
III .....

II1 : ∃τ : M → C lin.form τ(x∗x) > 0 if x 6= 0, trace: τ(xy) = τ(yx)
II∞: τ is a weight (”unbounded”)

R = ” ⊗
n∈N

Mn(C)”, τ = ” ⊗
n∈N

τn”
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Inclusions of VN alg.

M0 ⊂ M1 to be classified

Basic construction (Jones 83’)

M0 ⊂ M1 ⊂ M2 ⊂ M3 ⊂ ......
∪ ∪ ∪

M ′0 ∩M1 ⊂ M ′0 ∩M2 ⊂ M ′0 ∩M3 ⊂ ......
∪ ∪

M ′1 ∩M2 ⊂ M ′1 ∩M3 ⊂ ......
∪

M ′2 ∩M3 ⊂ ......

Depth 2 : M ′0 ∩M1 ⊂ M ′0 ∩M2 ⊂ M ′0 ∩M3 ⊂ ...... basic

Irreducible: M ′0 ∩M1 = C
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Index for subfactors

M0 ⊂ M1, type II1-subfactors of L(H)

Index: [M1 : M0] =
dimM0

(H)

dimM1
(H)

Theorem Jones 83’

{[M1 : M0]/Mi type II1} = {4cos2 π
n
/n = 3....} ∪ [4,∞]

QUESTION: Is any number in [4,∞] obtained for an irreducible inclusion?
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Actions of groups on VN alg.

Action of G on M: continous homomorphism α : G → Aut(M)

Examples

If G acts on (X , µ), it acts on L∞(X , µ) : αg (f )(t) = f (t / g)

If G is finite (G ⊂ Sn ⊂ S∞(fini .support)) it acts on R = ⊗
i∈S∞

M2(C) by

Bernoulli shifts: αg ((af )f∈S∞) = (ag◦f )f∈S∞

Associated VN alg

MG = {m/∀gαg (m) = m} if H < G : [MH : MG ] = [G : H]

M o G⊂ L(H ⊗ L2(G )))(= L(L2(G ,H)):

< (g 7→ αg (m))m∈M , 1⊗R(G ) >

α(MG ) ⊂ α(M) ⊂ M o G

Jean-Michel Vallin (MAPMO) Subfactors in relation with quantum groups Référence October 7 2010 7 / 27



Quantum groups in VN alg. framework

Definition Kustermans Vaes 99’

(M, Γ, φ, ψ) quantum group:

Γ : M → M⊗M (Γ⊗ i)Γ = (i ⊗ Γ)Γ

φ, ψ n.sf.f. weights on M ∀x > 0 in M:
(φ⊗ i)Γ(x) = φ(x)1 and (i ⊗ ψ)Γ(x) = ψ(x)1

Examples:

dim M <∞: Kac algebras (M, Γ, κ, ε)

Commutative case: M = L∞(G ) , Γ(f )(x , y) = f (xy)
φ(f ) =

∫
G

f (s)ds, ψ(f ) =
∫
G

f (s)d ′s

Symmetric case (ςΓ = Γ): M = R(G ) , Γ(ρ(s)) = ρ(s)⊗ ρ(s)
φ(ρ(f )) = ψ(ρ(f )) = f (e)
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Actions of Quantum groups on VN alg.

Definition

Action of (M, Γ, φ, ψ) on A (VN alg): α : A→ A⊗M

(α⊗ i)α = (i ⊗ Γ)α

Examples:

M acts on itself using Γ

Commutative case: M = L∞(G ), L∞(G )⊗M = L∞(G ,M): there exists an
action g 7→ αg such that: α(m)(g) = αg (m)

Assoc.VN alg.: Mα = {m ∈ M/α(m) = m ⊗ 1} , A o M
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A theorem and its previous reciproque !

Theorem Vaes 01’ and 05’

α(M) ⊂ A o M is always depth 2. It exists a type III factor A on which any
quantum group M acts with α(M) ⊂ A o M irreducible (strictly outer), but not
any quantum group can act stric. out. on any factor.

Theorem Enock Nest 96’

Let M0 ⊂ M1 a regular depth 2 irreducible inclusion (M ′0 ∩M1 = C), then
M ′0 ∩M2 and M ′1 ∩M3 have can. struct. of quantum group.

There exists an action a of M ′1 ∩M3 on M1, such that:
M0 ⊂ M1 ⊂ M2 ≡ a(Ma

1 ) ⊂ a(M1) ⊂ M1 oa (M ′1 ∩M3)
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The finite index case

Theorem Szymanski 94’
Référence

M0 ⊂ M1: II1 factors (τ), irreducible, depth 2, finite index λ = [M1 : M0]

M0 ⊂ M1

e1⊂ M2

e2⊂ M3....... basic construction, then:

A = M ′0 ∩M2, B = M ′1 ∩M3: finit. Kac algebras in duality
there exists an action a of B on M1, such that M0 = Ma

1 , and M2 = M1 oa B

[M1 : M0] = dim B

Canonical bracket: < a, b >= λ−2τ(ae2e1b). < Γ(a), b ⊗ c >=< a, bc >

< κ(a), b >= < a∗, b∗ > ε(a) =< a, 1 > YOU CAN COMPUTE!!!!!!
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A family of examples

Definition
A matched pair H,K of subgroups of a finite group G is any pair of subgroups
such that: G = HK = {hk/h ∈ H, k ∈ K} and H ∩ K = {e}

Let us consider an outer and proper action of G on R: α : G → AutR
if g 6= e then αg /∈ IntR

Theorem
If H,K matched pair of finite groups and G = HK acts properly and outerly on
the hyperfinite type II1 factor R, then:

M0 = RH ⊂ M1 = R o K is in the conditions of Sym th.

The quantum groupoids M ′0 ∩M2 and M ′1 ∩M3 can be expressed with a
double groupoid and some crossed products.
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Quantum groups associated with matched pairs

1) The double groupoids T , T ′. Référence

T = {
h

kk ′

h′
/ h, h′ ∈ H, k , k ′ ∈ K hk = k ′h′}

T → T ′: transposition

(
h

kk ′

h′
)t =

k ′

h′h

k
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T is a groupoid with basis K and a groupoid with basis H

Horizontal product:
a

kc

d

D
?
K

a′

b′k

d ′
=

aa′

b′c

dd ′

Vertical product a
bc

h
B
?
H

h
b′c ′

d ′

=
a

bb′cc ′

d ′

Horizontal unities :
e

kk

e

, and vertical
h

ee

h

Inverse: (
a

bc

d

)−D =
a−1

cb

d−1

, (
a

bc

d

)−B = c
d

b−1−1

a

Jean-Michel Vallin (MAPMO) Subfactors in relation with quantum groups Référence October 7 2010 14 / 27



The VN algebras CT and CT ′

Product: (
∑
t∈T

att).(
∑

t′∈T
bt′t
′) =

∑
t∈T

∑
t1

D
?
K
t2=t

(at1 bt2 )t

Involution: (
∑
t∈T

att)∗ = (
∑
t∈T

att
−D)

CT and CT ′ are crossed products:
g = kh, h, k unique, g = p1(g)p2(g)

Mutual actions of H and K

h . k = p1(hk), h / k = p2(hk) : hk = (h . k)(h / k)

C (K ) o H generated by Vhχk .

Proposition:

Vhχk 7→ h . k
h

k

h / k

: isomorphism between C (K ) o H and CT

C (H) o K ∗- isomorphic to CT ′
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Quantum groups associated with matched pairs

Theorem [Andruskiewicz-Natale] Référence

CT has a quantum group structure:

Γ(t) =
∑

t1
B
?
H
t2=t

t1 ⊗ t2 =
∑

t1
B
?
H
t2=t

t1 ⊗ t2

κ(t) = t−DB

ε(t) =

 1 if t of the form e
h

e

h
0 otherwise
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The inclusion RH ⊂ R o K (matched pairs)

Theorem Szymanski JMV

H,K matched pairs, G = HK acts outerly and properly on R,

M0 = RH ⊂ M1 = R o K is in NV th conditions

There exists an isomorphism θI : M ′0 ∩M2 → CT
There exists an isomorphism θJ : M ′1 ∩M3 → CT ′

The dualities are preserved: , ∀x ∈ T , x ′ ∈ T ′ :< θ−1
I (x), θ−1

J (x ′) >= δx′,x t

NV
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Quantum groupoid: (A, Γ, κ, ε)?

Définition

A : finite dim. VN algebra (A = ⊕
i=1,..k

Mni (C))

Γ : A→ A⊗ A: ∗-homom.
(Γ⊗ i)Γ = (i ⊗ Γ)Γ ( Γ(1) 6= 1, en gén.)

κ : A→ A, linear antimultiplicative :
(κ ◦ ∗)2 = i
ς(κ⊗ κ)Γ = Γ ◦ κ
(m(κ⊗ i)⊗ i)(Γ⊗ i)Γ(x) = (1⊗ x)Γ(1)

(where m(a⊗ b) = ab)

ε : A→ C: linear
(ε⊗ i)Γ = (i ⊗ ε)Γ = i
(ε⊗ ε)((x ⊗ 1)Γ(1)(1⊗ y)) = ε(xy)

At := {a ∈ A/Γ(a) = (a⊗ 1)Γ(1) = Γ(1)(a⊗ 1)}
As := {a ∈ A/Γ(a) = (1⊗ a)Γ(1) = Γ(1)(1⊗ a)}
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Commutative quantum groupoid

G finite groupoid

A = L∞(G) (⊂ L(l2(G))), A⊗ A = L∞(GxG)

Γ(f )(x , y) =

{
f (xy) x, y composables
0 otherwise

κ(f )(x) = f (x−1)

ε(f ) =
∑

u∈G0 f (u)

At = {φ ◦ r/φ ∈ L∞(G 0)},As = {φ ◦ s/φ ∈ L∞(G 0)}
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Symmetric example

G finite groupoid

Â = L(G)(= C(G)) (⊂ L(l2(G)))

Γ̂(λ(s)) = λ(s)⊗ λ(s)

κ̂(λ(s)) = λ(s−1)

ε̂(λ(s)) = 1

Ât = Âs = At
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Quantum groupoid action

Definition
Right action of (A, Γ, κ, ε) on a VN alg M : (b, α)

b : At ↪→ M: 1 to 1, unital *-antihom.

α : M ↪→ M ⊗ A, 1 to 1 *-hom. (α(1) 6= 1)

∀n ∈ At : α(1)(b(n)⊗ 1) = α(1)(1⊗ n) (α(M) ⊂ Mb ?
At

iA)

(α⊗ i)α = (i ⊗ Γ)α

∀n ∈ At : α(b(n)) = α(1)(1⊗ κ(n))

Crossed product
M n A :=< α(M) ∪ α(1)(1⊗ Â′) >

(
⊂ (M ⊗ L(HA))α(1)

)
Fixed point algebra
MA := {m ∈ M/α(m) = α(1)(m ⊗ 1)}

MA ⊂ M n A
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Quantum groupoids and II1 subfactors

Theorem Nikshych-Vainerman 00’,David 05’
Référence

M0 ⊂ M1: II1 factors (τ), depth 2, finite index λ = [M1 : M0]

M0 ⊂ M1

e1⊂ M2

e2⊂ M3....... basic construction, then:

A = M ′0 ∩M2, B = M ′1 ∩M3: quantum groupoids, M ′0 ∩M1 common basis, it
exists a act. of B on M1 with M0 = Ma

1 , and M2 = M1 oa B

[M1 : M0] = [B : Bt ]

there exists a natural Galois correspondance between the lattice of
intermediate subfactors M1 ⊂ P ⊂ M2 and the lattice of left coideal
*-subalgebras of M ′1 ∩M2

Bracket : < a, b >= λ−2τ(ahe2e1hb). < Γ(a), b ⊗ c >=< a, bc >

< κ(a), b >= < a∗, b∗ > ε(a) =< a, 1 > YOU CAN COMPUTE
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Quantum groupoids and II1 subfactors

Theorem Nikshych-Vainerman,David
Référence
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Adapted pairs of groups

Définition
H,K finite subgroups of G , adapted pair if:

G = HK = {hk/h ∈ H, k ∈ K}

Remark: g = hk = hxx−1k x ∈ H ∩ K

One can define the double groupoids T and T ′, the quantum groupoids
(CT ,CT ′) , they still are crossed products and finally:
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The inclusion RH ⊂ R o K (adapted pairs of groups)

Theorem JMV 08’
If H,K adapted pair of groups, and let G = HK act outerly and properly on R,

M0 = RH ⊂ M1 = R o K is in NV theorem conditions

It exists an isomorphism θI : M ′0 ∩M2 → CT
It exists an isomorphism θJ : M ′1 ∩M3 → CT ′

The dualities are preserved: ,
∀x ∈ T , x ′ ∈ T ′ :< θ−1

I (x), θ−1
J (x ′) >= |H ∩ K |.δx′,x t

NV
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Remarks on the index

Remarks

[R o K : RH ] = |H||K | ∈ N
Quantum groupoids actions lead to algebraic integers

In order to obtain other values of the index (non irreducible case), one can
use a reconstruction theorem which gives quantum groupoids from fusion
categories (L. Vainerman’s talks)
Example: the Tambara Yamagami categories give all numbers of the form
(n +

√
n)2 (C.Mevel’s Thesis 2010 in Caen)

You need (not finite) quantum groups actions on not hyperfinite factors to
answer exactly Jones question (see tomorrow Fima’s talk)......
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