7th focused semester on Quantum Groups

E. Germain, R. Vergnioux

GDR Noncommutative Geometry, France

July 2d, 2010

7th focused semester on Quantum Groups

- Quantum groups and applications
 - Quantum groups
 - Subfactors
 - Universal and free quantum groups
 - Noncommutative Geometry and K-theory
- - Graduate courses
 - Workshops
 - Conference

Quantum groups

Idea: encode the group structure in an algebra A and a coproduct

 $\Delta: A \to A \otimes A$ (and maybe also an antipode...)

G compact group $\rightarrow A = C(G)$ with coproduct $\Delta(\varphi)(g,h) = \varphi(gh)$

 Γ discrete group $\rightarrow \mathcal{A} = \mathbb{C}\Gamma$ with coproduct $\Delta(\gamma) = \gamma \otimes \gamma$ for $\gamma \in \Gamma$

 \mathfrak{G} Lie algebra o $U\mathfrak{G}$ with coproduct $\Delta(X) = X \otimes 1 + 1 \otimes X$ for $X \in \mathfrak{G}$

One motivation: Pontriagin duality for non abelian groups.

1973: Kac. Vainerman, Enock, Schwartz build a "self-dual" category containing locally compact groups.

Quantum groups

Idea: encode the group structure in an algebra A and a coproduct

 $\Delta: A \to A \otimes A$ (and maybe also an antipode...)

G compact group $\rightarrow A = C(G)$ with coproduct $\Delta(\varphi)(g,h) = \varphi(gh)$

 Γ discrete group $\rightarrow \mathcal{A} = \mathbb{C}\Gamma$ with coproduct $\Delta(\gamma) = \gamma \otimes \gamma$ for $\gamma \in \Gamma$

 \mathfrak{G} Lie algebra $\rightarrow U\mathfrak{G}$ with coproduct $\Delta(X) = X \otimes 1 + 1 \otimes X$ for $X \in \mathfrak{G}$

One motivation: Pontriagin duality for non abelian groups.

1973: Kac. Vainerman, Enock, Schwartz build a "self-dual" category containing locally compact groups.

Let quantum groups act ! $G \curvearrowright X$ yields $\delta_X : C(X) \to C(G \times X) \simeq$ $\simeq C(G) \otimes C(X)$ given by $\delta(\varphi)(g,x) = \varphi(g \cdot x)$.

Quantum action : coaction $\delta_B: B \to A \otimes B$ of (A, Δ) on another algebra

B. One can construct a crossed product $B \times A$ with coaction of \hat{A} .

Baaj-Skandalis 1993: general framework for Takesaki-Takai duality. In "good cases", $B \times A \times \hat{A}$ is covariantly stably isomorphic to B.

In the 1980's, new series of examples coming from physical motivations (Yang-Baxter equation...)

Drinfeld-Jimbo 1985 : q-deformations $U_q \mathfrak{G}$ for \mathfrak{G} complex simple Woronowicz 1987 : $SU_a(n)$, general definition of compact quantum groups Rosso 1988 : the restricted duals $(U_a\mathfrak{G})^\circ$ fit into Woronowicz' framework Kustermans-Vaes 2000: locally compact quantum groups

In the 1980's, new series of examples coming from physical motivations (Yang-Baxter equation...)

Drinfeld-Jimbo 1985 : q-deformations $U_q\mathfrak{G}$ for \mathfrak{G} complex simple Woronowicz 1987 : $SU_q(n)$, general definition of compact quantum groups Rosso 1988 : the restricted duals $(U_q\mathfrak{G})^\circ$ fit into Woronowicz' framework Kustermans-Vaes 2000 : locally compact quantum groups

Key examples :

- $SU_q(2)$, "non unimodular" compact quantum group
- "Quantum ax+b" groups, with scaling constant $\nu \neq 1$ (Woronowicz 1999)
- Cocycle bicrossed products arising from "matched pairs" $G_1G_2 \subset G$, yielding non-semi-regular l.c. quantum groups (Majid, Baaj, Skandalis, Vaes 1991–2003)

Subfactors

Factor : von Neumann algebra M such that $Z(M)=M'\cap M=\mathbb{C}1$.

Consider an inclusion of factors $M_0 \subset M_1$ and the associated Jones' tower $M_0 \subset M_1 \subset M_2 \subset M_3 \subset \cdots$. Assume the inclusion is irreducible $(M_0' \cap M_1 = \mathbb{C}1)$, regular, and has depth $2 (M_0' \cap M_3)$ is a factor). Example: $M^G \subset M \subset M \times G \subset \cdots$ for every outer integrable action of a l.c. group G on a factor M.

Subfactors

Factor : von Neumann algebra M such that $Z(M)=M'\cap M=\mathbb{C}1$.

Consider an inclusion of factors $M_0 \subset M_1$ and the associated Jones' tower $M_0 \subset M_1 \subset M_2 \subset M_3 \subset \cdots$. Assume the inclusion is irreducible $(M_0' \cap M_1 = \mathbb{C}1)$, regular, and has depth $2 (M_0' \cap M_3)$ is a factor). Example: $M^G \subset M \subset M \times G \subset \cdots$ for every outer integrable action of a l.c. group G on a factor M.

Ocneanu, Enock-Nest 1996 : all such inclusions are of the above form with G a locally compact *quantum* group, given by $L^{\infty}(G) = M'_0 \cap M_2$ and $L^{\infty}(\hat{G}) = M'_1 \cap M_3$.

Vaes 2005 : not every l.c. compact quantum group can act outerly on any factor (obstruction related to Connes' T invariant). There exist a type III_1 factor on which every l.c. quantum group can act outerly.

(ロト 4回 ト 4 重 ト 4 重 ト) 重 | 釣りで

Jones 1983: does the hyperfinite II_1 factor R admits irreducible subfactors of any index $\lambda > 4$?

Wasserman inclusions : if G acts outerly on N and π is an irreducible representation of G, consider $M_0 = 1 \otimes N^G \subset (B(H_\pi) \otimes N)^G = M_1$. This is an irreducible inclusion with index $(\dim \pi)^2$ relatively to the natural condition expectation $E: M_1 \to M_0$.

6 / 17

Jones 1983: does the hyperfinite II_1 factor R admits irreducible subfactors of any index $\lambda > 4$?

Wasserman inclusions : if G acts outerly on N and π is an irreducible representation of G, consider $M_0 = 1 \otimes N^G \subset (B(H_\pi) \otimes N)^G = M_1$. This is an irreducible inclusion with index $(\dim \pi)^2$ relatively to the natural condition expectation $E: M_1 \to M_0$.

With quantum groups, dim π can take non-integer values! But the factors can be type III... Take $G = SU_q(2)$ and π its fundamental representation, so that dim $\pi = q + q^{-1}$.

Take $N = L(F_n) * L^{\infty}(G)$ with trivial action on the first factor. Let $\phi = \tau * h$ be the free product state on N.

Shlyakhtenko-Ueda 2001 : The inclusion of the centralizers $M_{
m n}^\phi \subset M_{
m i}^{\phi E}$ is an inclusion of type II_1 factors with the same index and relative commutants as $M_0 \subset M_1$.

 $L(F_{\infty})$ admits irreducible subfactors of any index $\lambda > 4$.

Liberation of quantum groups

The fonction algebras $C(U_n)$, $C(O_n)$, $C(S_n)$ can be described by generators and relations as follows.

Calling u_{ij} , $1 \leq i,j \leq n$ the generators and putting $U = (u_{ij})_{ij}$ we have

•
$$C(U_n) = \langle 1, u_{ij} \mid [u_{ij}, u_{kl}] = 0, UU^* = U^*U = I_n \rangle_{C^*}$$

•
$$C(O_n) = \langle 1, u_{ij} \mid [u_{ij}, u_{kl}] = 0, U = U^*, UU^* = U^*U = I_n \rangle_{C^*}$$

•
$$C(S_n) = \langle 1, u_{ij} \mid [u_{ij}, u_{kl}] = 0, u_{ij}^2 = u_{ij}, \sum_k u_{ik} = \sum_k u_{kj} = 1 \rangle_{C^*}$$

Liberation of quantum groups

The fonction algebras $C(U_n)$, $C(O_n)$, $C(S_n)$ can be described by generators and relations as follows.

Calling u_{ii} , $1 \le i, j \le n$ the generators and putting $U = (u_{ii})_{ii}$ we have

- $C(U_n) = \langle 1, u_{ii} \mid [u_{ii}, u_{kl}] = 0, UU^* = U^*U = I_n \rangle_{C^*}$
- $C(O_n) = \langle 1, u_{ii} \mid [u_{ii}, u_{kl}] = 0, U = U^*, UU^* = U^*U = I_n \rangle_{C^*}$
- $C(S_n) = \langle 1, u_{ij} \mid [u_{ij}, u_{kl}] = 0, u_{ii}^2 = u_{ij}, \sum_k u_{ik} = \sum_k u_{kj} = 1 \rangle_{C^*}$

Remove the vanishing of commutators $\rightarrow C^*$ -algebras $A_u(n)$, $A_o(n)$, $A_s(n)$. Coproduct $\Delta(u_{ii}) = \sum_{k} u_{ik} \otimes u_{ki} \rightarrow$ "free" compact quantum groups.

Wang 1998: the "quantum group of permutations of 4 points" is infinite, i.e. dim $A_s(4) = +\infty$.

4日 → 4周 → 4 差 → 4 差 → 9 9 0 0

Banica 1996–1998: representation theory of "liberated quantum groups".

- $A_o(n)$ has the same fusion rules as SU(2)
- $A_s(n)$ has the same fusion rules as SO(3)
- $A_{u}(n)$ has irreducibles coreps indexed by words in u, \bar{u} with recursive fusion rules : $vu \otimes uw = wuuw$, $v\bar{u} \otimes uw = v\bar{u}uw \oplus v \otimes w$, ...

Dual point of view : compare $A_*(n)$ with group C^* -algebras $C^*(\Gamma)$. We have e.g. a regular representation $A \to B(H)$ (Haar state) and a trivial representation $A \to \mathbb{C}$ (co-unit).

Banica: "non-amenability" of $A_*(n)$ for $n \ge 4$.

Banica 1996–1998: representation theory of "liberated quantum groups".

- $A_o(n)$ has the same fusion rules as SU(2)
- $A_s(n)$ has the same fusion rules as SO(3)
- $A_{u}(n)$ has irreducibles coreps indexed by words in u, \bar{u} with recursive fusion rules: $vu \otimes uw = wuuw$, $v\bar{u} \otimes uw = v\bar{u}uw \oplus v \otimes w$, ...

Dual point of view : compare $A_*(n)$ with group C^* -algebras $C^*(\Gamma)$. We have e.g. a regular representation $A \to B(H)$ (Haar state) and a trivial representation $A \to \mathbb{C}$ (co-unit).

Banica: "non-amenability" of $A_*(n)$ for $n \ge 4$.

Vaes-Vergnioux 2007: like free group factors, the von Neumann algebras $A_o(n)''$ are full and prime II_1 factors.

Vergnioux 2010: unlike the one of free groups, the first L^2 -Betti number $\beta_1^{(2)}(\mathcal{A}_0(n))$ vanishes.

These results use methods inspired from geometric group theory.

Noncommutative Geometry

The classical sphere S^3 is the quotient of SU(2) by its maximal torus T. The q-deformation $SU_q(2)$ still "contains" $T \rightarrow Podles'$ sphere S_q^3 :

- given by a noncommutative C^* -algebra $C(S_q^3)$
- naturally equipped with an action of $SU_a(2)$
- and with a Dirac operator D on a "natural" $C(S_q^3)$ -module

D is defined diagonnally on quantum "spherical harmonics" coming from the knowledge of the representation theory of $SU_a(2)$.

Nest-Voigt 2009: As in the classical case, using D one proves that $C(S_a^3)$ is $KK^{SU_q(2)}$ -equivalent to $\mathbb{C} \oplus \mathbb{C}$.

Special feature of the quantum case: additional symmetry. In fact the Drinfeld double $D(SU_a(2))$ acts on S_a^3 !

Voigt 2010 : $C(S_q^3)$ is $KK^{D(SU_q(2))}$ -equivalent to $\mathbb{C} \oplus \mathbb{C}$.

Using work of Meyer, Nest, Vaes, this implies the Baum-Connes conjecture for the dual of $SU_a(2)$, and by monoidal equivalence, for the duals of the universal orthogonal quantum groups $A_o(Q)$.

Consequence: the full and reduced versions of $A_0(Q)$ have K_0 and K_1 groups equal to \mathbb{Z} .

Special feature of the quantum case: additional symmetry. In fact the Drinfeld double $D(SU_a(2))$ acts on S_a^3 !

Voigt 2010 : $C(S_q^3)$ is $KK^{D(SU_q(2))}$ -equivalent to $\mathbb{C} \oplus \mathbb{C}$.

Using work of Meyer, Nest, Vaes, this implies the Baum-Connes conjecture for the dual of $SU_a(2)$, and by monoidal equivalence, for the duals of the universal orthogonal quantum groups $A_o(Q)$.

Consequence: the full and reduced versions of $A_0(Q)$ have K_0 and K_1 groups equal to \mathbb{Z} .

Question: what about the "quantum space" $SU_a(2)$ itself? Spectral triples have been constructed and studied by Chakraborty-Pal, Connes, Dabrowski-Landi et al., but they do not satisfy the strongest requirements of noncommutative geometry...

7th focused semester on Quantum Groups

- - Quantum groups
 - Subfactors
 - Universal and free quantum groups
 - Noncommutative Geometry and K-theory
- Organization of the special semester
 - Graduate courses
 - Workshops
 - Conference

Graduate courses

Lectures series :

- B. Leclerc (ICM 2010 lecturer) Introduction to quantum enveloping algebras
- R. Vergnioux Compact and discrete quantum groups
- L. Vainerman Representations of quantum groups and applications to subfactors and topological invariants

Mini-lectures:

- T. Banica Quantum permutation groups
- Ch. Voigt Quantum groups and NCG
- S. Sundar *Odd dimensional quantum spheres*

Quantum Groups and physics

Date: 6-10 September 2010

Location: Caen

Mini-lectures by John Barrett:

- $U_a(sl(2))$ at root of unity
- Turaev-Viro topological quantum field theory for 3-manifolds

List of invited talks: Arzano, Girelli, Kasprzak, Kowalski, Lukierski, Majid, Martinetti, Meusburger, Nikshych, Noui, Perez, Tolstoiy,

GREFI-GENCO meeting

Date: 27 September 1 October 2010

Location: Marseille (CIRM)

Mini-lectures:

- B. Collins Weingarten calculus and applications to quantum groups
- C. Pinzari *Tensor categories and quantum groups*

List of invited talks: Banica, Capitaine, Enock, Isola, Cipriani, Landi, Morsella, Popa, Skandalis, Vasselli, Vergnioux,

14 / 17

Conference

Date: 30 August 3 September 2010

Location: Clermont-Ferrand

Quantum groups and interactions with

- Free probability
- Hopf-Galois
- Operator algebras
- Representation theory
- Tensor Categories

List of invited lecturers: Banica, Bruguieres, Caenepeel, Carnovale, Caspers, Colliins, Cuadra, Curran, De COmmer, Evans, Fima, Galindo, Guillot, Kassel, Launois, Lecouvey, Meir, Morrison, Mueger, Neshveyev, Neufang, Nikshych, Ostrik, Skalski, Voigt

• Learn algebra

- Learn algebra
- Get acquainted to sophisticated techniques

- Learn algebra
- Get acquainted to sophisticated techniques
- Get problems from physicists

- Learn algebra
- Get acquainted to sophisticated techniques
- Get problems from physicists
- Do the math you know with QG as toy examples

- Learn algebra
- Get acquainted to sophisticated techniques
- Get problems from physicists
- Do the math you know with QG as toy examples
- Taste Camembert au lait cru?

Web Links

Register now at

www.math.unicaen.fr/~aps/qsem