Stability of the generic polynomial of integers

Nidal Ali

Lebanese University, Lebanon

Let $f_1(x) = f(x) \in K[x]$ and for all $m \ge 2$, $f_m(x) = (f_{m-1} \circ f)(x)$. We say that f is a stable polynomial over K if for every $m \ge 1$, $f_m(x)$ is irreducible over K.

Let now $K = \mathbb{Q}(\theta)$ be a number field of degree $n, \{w_1, \ldots, w_n\}$ an integral basis of K. Let u_1, \ldots, u_n be algebraically independent variables over $K, \xi = u_1w_1 + \cdots + u_nw_n$ and $F(u_1, \ldots, u_n, x) = Irr(\xi, L, x)$ where $L = \mathbb{Q}(u_1, \ldots, u_n)$. The polynomial $F(u_1, \ldots, u_n, x)$ is called the generic polynomial of integers of K, it is homogeneous of degree n. It is stable in $\mathbb{Z}[u_1, \ldots, u_n, x]$ under some arithmetical conditions on K, for example, when there exists a prime number p in \mathbb{Z} totally ramified in K.