Stability of the generic polynomial of integers

Nidal Ali
Lebanese University, Lebanon

Let $f_{1}(x)=f(x) \in K[x]$ and for all $m \geq 2, f_{m}(x)=\left(f_{m-1} \circ f\right)(x)$. We say that f is a stable polynomial over K if for every $m \geq 1, f_{m}(x)$ is irreducible over K.

Let now $K=\mathbb{Q}(\theta)$ be a number field of degree $n,\left\{w_{1}, \ldots, w_{n}\right\}$ an integral basis of K. Let u_{1}, \ldots, u_{n} be algebraically independent variables over $K, \xi=u_{1} w_{1}+\cdots+u_{n} w_{n}$ and $F\left(u_{1}, \ldots, u_{n}, x\right)=\operatorname{Irr}(\xi, L, x)$ where $L=\mathbb{Q}\left(u_{1}, \ldots, u_{n}\right)$. The polynomial $F\left(u_{1}, \ldots, u_{n}, x\right)$ is called the generic polynomial of integers of K, it is homogeneous of degree n. It is stable in $\mathbb{Z}\left[u_{1}, \ldots, u_{n}, x\right]$ under some arithmetical conditions on K, for example, when there exists a prime number p in \mathbb{Z} totally ramified in K.

